首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

2.
As patients with Parkinson’s disease (PD) are at high risk for comorbid depression, it is hypothesized that these two diseases are sharing common pathogenic pathways. Using regional homogeneity (ReHo) and functional connectivity approaches, we characterized human regional brain activity at resting state to examine specific brain networks in patients with PD and those with PD and depression (PDD). This study comprised 41 PD human patients and 25 normal human subjects. The patients completed the Hamilton Depression Rating Scale and were further divided into two groups: patients with depressive symptoms and non-depressed PD patients (nD-PD). Compared with the non-depressed patients, those with depressive symptoms exhibited significantly increased regional activity in the left middle frontal gyrus and right inferior frontal gyrus, and decreased ReHo in the left amygdala and bilateral lingual gyrus. Brain network connectivity analysis revealed decreased functional connectivity within the prefrontal-limbic system and increased functional connectivity in the prefrontal cortex and lingual gyrus in PDD compared with the nD-PD group. In summary, the findings showed regional brain activity alterations and disruption of the mood regulation network in PDD patients. The pathogenesis of PDD may be attributed to abnormal neural activity in multiple brain regions.  相似文献   

3.
When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network.  相似文献   

4.

Background

The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA).

Principal Findings

Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients'' spectra are shifted towards higher frequencies.

Conclusion

In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity.  相似文献   

5.
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.  相似文献   

6.
The neural basis of self and identity has received extensive research. However, most of these existing studies have focused on situations where the internal representation of the self is consistent with the external one. The present study used fMRI methodology to examine the neural correlates of two different types of identity conflict: identity faking and concealment. Participants were presented with a sequence of names and asked to either conceal their own identity or fake another one. The results revealed that the right insular cortex and bilaterally inferior frontal gyrus were more active for identity concealment compared to the control condition, whereas identity faking elicited a significantly larger percentage signal increase than the control condition in the right superior frontal gyrus, left calcarine, and right caudate. These results suggest that different neural systems associated with both identity processing and deception were involved in identity concealment and faking.  相似文献   

7.
Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD.  相似文献   

8.
Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD); however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI). Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (ACC), and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients’ interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD.  相似文献   

9.
The current research was designed to establish whether individual differences in timing performance predict neural activation in the areas that subserve the perception of short durations ranging between 400 and 1600 milliseconds. Seventeen participants completed both a temporal bisection task and a control task, in a mixed fMRI design. In keeping with previous research, there was increased activation in a network of regions typically active during time perception including the right supplementary motor area (SMA) and right pre-SMA and basal ganglia (including the putamen and right pallidum). Furthermore, correlations between neural activity in the right inferior frontal gyrus and SMA and timing performance corroborate the results of a recent meta-analysis and are further evidence that the SMA forms part of a neural clock that is responsible for the accumulation of temporal information. Specifically, subjective lengthening of the perceived duration were associated with increased activation in both the right SMA (and right pre-SMA) and right inferior frontal gyrus.  相似文献   

10.
Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate network properties. To this end, we constructed brain functional networks based on 27 subjects’ fMRI data that was collected while performing explicit and implicit language tasks. We found that network properties and network hubs corresponding to the implicit language task were similar to those associated with the explicit language task. We also found common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may modulate the properties of brain functional networks.  相似文献   

11.
The human ability to flexibly alternate between tasks (i.e., task-switching) represents a critical component of cognitive control. Many functional magnetic resonance imaging (fMRI) studies have explored the neural basis of the task-switching. However, no study to date has examined how individual differences in intrinsic functional architecture of the human brain are related to that of the task-switching. In the present study, we took 11 task-switching relevant areas from a meta-analysis study as the regions of interests (ROIs) and estimated their intrinsic functional connectivity (iFC) with the whole brain. This procedure was repeated for 32 healthy adults based upon their fMRI scans during resting-state (rfMRI) to investigate the correlations between switching cost and the iFC strength across these participants. This analysis found that switch cost was negatively correlated with a set of iFC involved ROIs including left inferior frontal junction, bilateral superior posterior parietal cortex, left precuneus, bilateral inferior parietal lobule, right middle frontal gyrus and bilateral middle occipital gyrus. These connectivity profiles represent an intrinsic functional architecture of task-switching where the left inferior frontal junction plays a hub role in this brain-behavior association. These findings are highly reproducible in another validation independent sample and provide a novel perspective for understanding the neural basis of individual differences in task-switching behaviors reflected in the intrinsic architecture of the human brain.  相似文献   

12.
Literature containing supra-natural, or magical events has enchanted generations of readers. When reading narratives describing such events, readers mentally simulate a text world different from the real one. The corresponding violation of world-knowledge during this simulation likely increases cognitive processing demands for ongoing discourse integration, catches readers’ attention, and might thus contribute to the pleasure and deep emotional experience associated with ludic immersive reading. In the present study, we presented participants in an MR scanner with passages selected from the Harry Potter book series, half of which described magical events, while the other half served as control condition. Passages in both conditions were closely matched for relevant psycholinguistic variables including, e.g., emotional valence and arousal, passage-wise mean word imageability and frequency, and syntactic complexity. Post-hoc ratings showed that readers considered supra-natural contents more surprising and more strongly associated with reading pleasure than control passages. In the fMRI data, we found stronger neural activation for the supra-natural than the control condition in bilateral inferior frontal gyri, bilateral inferior parietal lobules, left fusiform gyrus, and left amygdala. The increased activation in the amygdala (part of the salience and emotion processing network) appears to be associated with feelings of surprise and the reading pleasure, which supra-natural events, full of novelty and unexpectedness, brought about. The involvement of bilateral inferior frontal gyri likely reflects higher cognitive processing demand due to world knowledge violations, whereas increased attention to supra-natural events is reflected in inferior frontal gyri and inferior parietal lobules that are part of the fronto-parietal attention network.  相似文献   

13.
Recent imaging studies have shown that brain morphology and neural activity during sexual arousal differ between homosexual and heterosexual men. However, functional differences in neural networks at the resting state is unknown. The study is to characterize the association of homosexual preference with measures of regional homogeneity and functional connectivity in the resting state. Participants were 26 healthy homosexual men and 26 age-matched healthy heterosexual men in whom we collected echo planar magnetic resonance imaging data in the resting state. The sexual orientation was evaluated using the Kinsey Scale. We first assessed group differences in regional homogeneity and then, taking the identified differences as seed regions, we compared groups in measures of functional connectivity from those seeds. The behavioral significances of the differences in regional homogeneity and functional connectivity were assessed by examining their associations with Kinsey Scores. Homosexual participants showed significantly reduced regional homogeneity in the left inferior occipital gyrus, right middle occipital gyrus, right superior occipital gyrus, left cuneus, right precuneus, and increased regional homogeneity in rectal gyrus, bilateral midbrain, and left temporal lobe. Regional homogeneity correlated positively with Kinsey scores in the left inferior occipital gyrus. The homosexual group also showed reduced functional connectivity between left middle temporal gyrus, left supra-marginal gyrus, right cuneus and the seed region, i.e. left inferior occipital gyrus. Additionly, the connection between the left inferior occipital gyrus and right thalamus correlated positively with Kinsey scores. These differences in regional homogeneity and functional connectivity may contribute to a better understanding of the neural basis of male sexual orientation.  相似文献   

14.
Complex visuospatial processing relies on distributed neural networks involving occipital, parietal and frontal brain regions. Effects of physiological maturation (during normal brain development) and proficiency on tasks requiring complex visuospatial processing have not yet been studied extensively, as they are almost invariably interrelated. We therefore aimed at dissociating the effects of age and performance on functional MRI (fMRI) activation in a complex visual search task. In our cross-sectional study, healthy children and adolescents (n = 43, 19 females, 7-17 years) performed a complex visual search task during fMRI. Resulting activation was analysed with regard to the differential effects of age and performance. Our results are compatible with an increase in the neural network''s efficacy with age: within occipital and parietal cortex, the core regions of the visual exploration network, activation increased with age, and more so in the right than in the left hemisphere. Further, activation outside the visual search network decreased with age, mainly in left inferior frontal, middle temporal, and inferior parietal cortex. High-performers had stronger activation in right superior parietal cortex, suggesting a more mature visual search network. We could not see effects of age or performance in frontal cortex. Our results show that effects of physiological maturation and effects of performance, while usually intertwined, can be successfully disentangled and investigated using fMRI in children and adolescents.  相似文献   

15.
《IRBM》2021,42(6):457-465
Background and objectiveBased on magnetic resonance imaging (MRI), macroscopic structural and functional connectivity of human brain has been widely explored in the last decade. However, little work has been done on effective connectivity between individual brain parcels. In this preliminary study, we aim to investigate whole-brain effective connectivity networks from resting-state functional MRI (rs-fMRI) images.Material and methodsAfter the functional connectivity networks of 26 healthy subjects (aged from 25 to 35 years old) from Human Connectome Project database were derived from rs-fMRI images with dynamic time warping, proportional thresholding (PT) was performed on the functional connectivity matrices by retaining the PT% strongest functional connections. PT% ranges from 40% to 10% in steps of 5%. Then, effective connections corresponding to the PT% strongest functional connections, both bi-directional and unidirectional, were estimated with Renyi's 2-order transfer entropy (TE) method. Topological metrics of the built functional and effective connectivity networks were further characterized, including clustering coefficient, transitivity, and modularity.ResultsIt is found that the effective connectivity networks exhibit small world attributes, and that the networks contain a subset of highly interactive regions, including right frontal pole (in-degree 6), left middle frontal gyrus (in-degree 8, out-degree 1), right precentral gyrus (out-degree 9), left precentral gyrus (out-degree 7), right posterior division of supramarginal gyrus (in-degree 2, out-degree 3), left angular gyrus (out-degree 6), left inferior division of lateral occipital cortex (out-degree 6), right occipital pole (in-degree 5), right cerebellum 7b parcel (in-degree 15), and right cerebellum 8 parcel (in-degree 7, out-degree 1).ConclusionsThe observations in this study provide information about the casual interactions among brain parcels in resting state, helping reveal how different subregions of large-scale distributed neural networks are coupled together in performing cognitive functions.  相似文献   

16.

Background

Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood.

Methods

We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls.

Results

MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a relationship with duration of illness. MdDS participants showed positive correlations between grey matter volume in pgACC and bilateral cerebellar lobules VIII/IX, which was not seen in controls.

Conclusions

Individuals with MdDS show brain volume differences from healthy controls as well as duration of illness dependent volume changes in (a) visual-vestibular processing areas (IPL, SPL, V3, V5/MT), (b) default mode network structures (cerebellar IX, IPL, ACC), (c) salience network structures (ACC and IFG/AI) (d) somatosensory network structures (postcentral gyrus, MCC, anterior cerebellum, cerebellar lobule VIII), and (e) a structure within the central executive network (DLPFC). The identification of these associations may enhance future investigations into how exposure to oscillating environments can modulate brain function and affect motion perception as well cognitive and affective control.  相似文献   

17.

Background

There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson''s disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism.

Methodology/Principal Findings

To this end, we conducted 18FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM.

Conclusion/Significance

These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.  相似文献   

18.
Li R  Qin W  Zhang Y  Jiang T  Yu C 《PloS one》2012,7(2):e31877
Digits backward (DB) is a widely used neuropsychological measure that is believed to be a simple and effective index of the capacity of the verbal working memory. However, its neural correlates remain elusive. The aim of this study is to investigate the neural correlates of DB in 299 healthy young adults by combining voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses. The VBM analysis showed positive correlations between the DB scores and the gray matter volumes in the right anterior superior temporal gyrus (STG), the right posterior STG, the left inferior frontal gyrus and the left Rolandic operculum, which are four critical areas in the auditory phonological loop of the verbal working memory. Voxel-based correlation analysis was then performed between the positive rsFCs of these four clusters and the DB scores. We found that the DB scores were positively correlated with the rsFCs within the salience network (SN), that is, between the right anterior STG, the dorsal anterior cingulate cortex and the right fronto-insular cortex. We also found that the DB scores were negatively correlated with the rsFC within an anti-correlation network of the SN, between the right posterior STG and the left posterior insula. Our findings suggest that DB performance is related to the structural and functional organizations of the brain areas that are involved in the auditory phonological loop and the SN.  相似文献   

19.
Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD.  相似文献   

20.
Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP) has been identified as the anterior part of the intraparietal sulcus (aIPS), whereas the putative human equivalent of the monkey frontal region (F5) is located in the ventral part of the premotor cortex (vPMC). Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object – hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS), the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA) 44). We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号