首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms.  相似文献   

2.
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic pressure that controls the extent of DNA released in phages that initiate ejection. We carried out independent measurements of each effect, which is an essential requirement for their quantitative study. The fraction of phages that do not eject increased linearly with the external osmotic pressure. In the remaining phage particles ejection stopped after a defined amount of DNA was reached inside the capsid. Direct measurement of the size of non-ejected DNA by gel electrophoresis at different PEG concentrations in the latter sub-population allowed determination of the external osmotic pressure that balances the force powering DNA exit (47 atm for SPP1 wild-type). DNA exit stops when the ejection force mainly due to repulsion between DNA strands inside the SPP1 capsid equalizes the force resisting DNA insertion into the PEG solution. Considering the turgor pressure in the Bacillus subtilis cytoplasm the energy stored in the tight phage DNA packing is only sufficient to power entry of the first 17% of the SPP1 chromosome into the cell, the remaining 83% requiring application of additional force for internalization.  相似文献   

3.
The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for λ and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and λ, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.  相似文献   

4.
The translocation of genetic material from the viral capsid to the cell is an essential part of the viral infection process. Whether the energetics of this process is driven by the energy stored within the confined nucleic acid or cellular processes pull the genome into the cell has been the subject of discussion. However, in vitro studies of genome ejection have been limited to a few head-tailed bacteriophages with a double-stranded DNA genome. Here we describe a DNA release system that operates in an archaeal virus. This virus infects an archaeon Haloarcula hispanica that was isolated from a hypersaline environment. The DNA-ejection velocity of His1, determined by single-molecule experiments, is comparable to that of bacterial viruses. We found that the ejection process is modulated by the external osmotic pressure (polyethylene glycol (PEG)) and by increased ion (Mg2+ and Na+) concentration. The observed ejection was unidirectional, randomly paused, and incomplete, which suggests that cellular processes are required to complete the DNA transfer.  相似文献   

5.
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml(-1). This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many--though often isolated and/or contradictory--aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.  相似文献   

6.
Recent in vitro experiments have shown that DNA ejection from bacteriophage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I in the course of ejection. In this work, we argue by a combination of experimental techniques (osmotic suppression without DNase I monitored by UV absorbance, pulse-field electrophoresis, and cryo-transmission electron microscopy visualization) and simple scaling modeling that intact genome (i.e., undigested) ejection in a crowded environment is, on the contrary, enhanced or eventually complete with the help of a pulling force resulting from DNA condensation induced by the osmotic stress itself. This demonstrates that in vivo, the osmotically stressed cell cytoplasm will promote phage DNA ejection rather than resist it. The further addition of DNA-binding proteins under crowding conditions is shown to enhance the extent of ejection. We also found some optimal crowding conditions for which DNA content remaining in the capsid upon ejection is maximum, which correlates well with the optimal conditions of maximum DNA packaging efficiency into viral capsids observed almost 20 years ago. Biological consequences of this finding are discussed.  相似文献   

7.
Is phage DNA 'injected' into cells--biologists and physicists can agree   总被引:1,自引:0,他引:1  
The double-stranded DNA inside bacteriophages is packaged at a density of approximately 500 mg/ml and exerts an osmotic pressure of tens of atmospheres. This pressure is commonly assumed to cause genome ejection during infection. Indeed, by the addition of their natural receptors, some phages can be induced in vitro to completely expel their genome from the virion. However, the osmotic pressure of the bacterial cytoplasm exerts an opposing force, making it impossible for the pressure of packaged DNA to cause complete genome ejection in vivo. Various processes for complete genome ejection are discussed, but we focus on a novel proposal suggesting that the osmotic gradient between the extracellular environment and the cytoplasm results in fluid flow through the phage virion at the initiation of infection. The phage genome is thereby sucked into the cell by hydrodynamic drag.  相似文献   

8.
Total bacterial abundances estimated with different epifluorescence microscopy methods (4′,6-diamidino-2-phenylindole [DAPI], SYBR Green, and Live/Dead) and with flow cytometry (Syto13) showed good correspondence throughout two microcosm experiments with coastal Mediterranean water. In the Syto13-stained samples we could differentiate bacteria with apparent high DNA (HDNA) content and bacteria with apparent low DNA (LDNA) content. HDNA bacteria, “live” bacteria (determined as such with the Molecular Probes Live/Dead BacLight bacterial viability kit), and nucleoid-containing bacteria (NuCC) comprised similar fractions of the total bacterial community. Similarly, LDNA bacteria and “dead” bacteria (determined with the kit) comprised a similar fraction of the total bacterial community in one of the experiments. The rates of change of each type of bacteria during the microcosm experiments were also positively correlated between methods. In various experiments where predator pressure on bacteria had been reduced, we detected growth of the HDNA bacteria without concomitant growth of the LDNA bacteria, such that the percentage contribution of HDNA bacteria to total bacterial numbers (%HDNA) increased. This indicates that the HDNA bacteria are the dynamic members of the bacterial assemblage. Given how quickly and easily the numbers of HDNA and LDNA bacteria can be obtained, and given the similarity to the numbers of “live” cells and NuCC, the %HDNA is suggested as a reference value for the percentage of actively growing bacteria in marine planktonic environments.  相似文献   

9.
We studied the control parameters that govern the dynamics of in vitro DNA ejection in bacteriophage λ. Previous work demonstrated that bacteriophage DNA is highly pressurized, and this pressure has been hypothesized to help drive DNA ejection. Ions influence this process by screening charges on DNA; however, a systematic variation of salt concentrations to explore these effects has not been undertaken. To study the nature of the forces driving DNA ejection, we performed in vitro measurements of DNA ejection in bulk and at the single-phage level. We present measurements on the dynamics of ejection and on the self-repulsion force driving ejection. We examine the role of ion concentration and identity in both measurements, and show that the charge of counterions is an important control parameter. These measurements show that the mobility of ejecting DNA is independent of ionic concentrations for a given amount of DNA in the capsid. We also present evidence that phage DNA forms loops during ejection, and confirm that this effect occurs using optical tweezers.  相似文献   

10.
Bacterial growth rates on the rhizoplane of rape seedlings grown in sand were determined using 3H-thymidine incorporation into DNA. Axenic roots incorporated thymidine into DNA, which had to be subtracted from values for roots with associated bacteria. Thymidine incorporation into rhizoplane bacterial DNA ranged between 0.6 and 1.4 pmol thymidine h–1 root–1 for 6 to 26-day-old plants. Using a conversion factor, the turnover time of bacteria was calculated to decrease from 9.2 h for 6-day-old plants to 160h for 26-day-old plants. A similar value was found for rhizosphere bacteria of plants grown for 26 days in natural soil.  相似文献   

11.
All tailed bacteriophages follow the same general scheme of infection: they bind to their specific host receptor and then transfer their genome into the bacterium. DNA translocation is thought to be initiated by the strong pressure due to DNA packing inside the capsid. However, the exact mechanism by which each phage controls its DNA ejection remains unknown. Using light scattering, we analyzed the kinetics of in vitro DNA release from phages SPP1 and λ (Siphoviridae family) and found a simple exponential decay. The ejection characteristic time was studied as a function of the temperature and found to follow an Arrhenius law, allowing us to determine the activation energy that governs DNA ejection. A value of 25-30 kcal/mol is obtained for SPP1 and λ, comparable to the one measured in vitro for T5 (Siphoviridae) and in vivo for T7 (Podoviridae). This suggests similar mechanisms of DNA ejection control. In all tailed phages, the opening of the connector-tail channel is needed for DNA release and could constitute the limiting step. The common value of the activation energy likely reflects the existence for all phages of an optimum value, ensuring a compromise between efficient DNA delivery and high stability of the virus.  相似文献   

12.
Most bacteriophages are known to inject their double-stranded DNA into bacteria upon receptor binding in an essentially spontaneous way. This downhill thermodynamic process from the intact virion to the empty viral capsid plus released DNA is made possible by the energy stored during active packaging of the genome into the capsid. Only indirect measurements of this energy have been available until now, using either single-molecule or osmotic suppression techniques. In this work, we describe for the first time the use of isothermal titration calorimetry to directly measure the heat released (or, equivalently, the enthalpy) during DNA ejection from phage λ, triggered in solution by a solubilized receptor. Quantitative analyses of the results lead to the identification of thermodynamic determinants associated with DNA ejection. The values obtained were found to be consistent with those previously predicted by analytical models and numerical simulations. Moreover, the results confirm the role of DNA hydration in the energetics of genome confinement in viral capsids.  相似文献   

13.
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.  相似文献   

14.
Recent work has shown that pressures inside dsDNA phage capsids can be as high as many tens of atmospheres; it is this pressure that is responsible for initiation of the delivery of phage genomes to host cells. The forces driving ejection of the genome have been shown to decrease monotonically as ejection proceeds, and hence to be strongly dependent on the genome length. Here we investigate the effects of ambient salts on the pressures inside phage-λ, for the cases of mono-, di-, and tetravalent cations, and measure how the extent of ejection against a fixed osmotic pressure (mimicking the bacterial cytoplasm) varies with cation concentration. We find, for example, that the ejection fraction is halved in 30 mM Mg2+ and is decreased by a factor of 10 upon addition of 1 mM spermine. These effects are calculated from a simple model of genome packaging, using DNA-DNA repulsion energies as determined independently from x-ray diffraction measurements on bulk DNA solutions. By comparing the measured ejection fractions with values implied from the bulk DNA solution data, we predict that the bending energy makes the d-spacings inside the capsid larger than those for bulk DNA at the same osmotic pressure.  相似文献   

15.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

16.
Repair of clustered uracil DNA damages in Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
Multiply damaged sites (MDS) are defined as greater than/equal to two lesions within 10–15 bp and are generated in DNA by ionizing radiation. In vitro repair of closely opposed base damages ≥2 bp apart results in a double strand break (DSB). This work extends the in vitro studies by utilizing clusters of uracil DNA damage as model lesions to determine whether MDS are converted to DSBs in bacteria. Lesions were positioned within the firefly luciferase coding region, transformed into bacteria (wild-type, uracil DNA glycosylase-deficient, ung, or exonuclease III and endonuclease IV-deficient, xthnfo) and luciferase activity measured following repair. DSB formation was expected to decrease activity. Two closely opposed uracils separated by ≤7 bp decreased luciferase activity in wild-type and xthnfo, but not ung bacteria. Growth of bacteria to obtain plasmid-containing colonies demonstrated that the plasmid was destroyed following the mis-repair of two uracils positioned 7 bp apart. This study indicates a DSB is formed when uracil DNA glycosylase initiates repair of two closely opposed uracils ≤7 bp apart, even in the absence of the major apurinic endonucleases. This work supports the in vitro studies and demonstrates that DNA repair is not always advantageous to cells.  相似文献   

17.

Background

Left ventricular diastolic dysfunction is one of the main characteristics of heart failure patients with a preserved left ventricular ejection fraction. As bilirubin is regarded as an important endogenous antioxidant molecule, serum total bilirubin levels were compared between heart failure patients with a preserved left ventricular ejection fraction and normal controls in this study. We recruited 327 heart failure patients with a preserved left ventricular ejection fraction and 200 healthy controls. Patients were divided into 4 subgroups by their comprehensive echocardiographic manifestations, 1-mild, 2-moderate, 3-severe (reversible restrictive), 4-severe (fixed restrictive). Total bilirubin levels were compared using stepwise multiple regressions adjusted for selected factors.

Results

After adjusting for gender, age, smoking, systolic blood pressure, diastolic blood pressure, total cholesterol and triglyceride, serum total bilirubin levels were significantly lower in the heart failure group compared with the control group (P < 0.01). Patients in the subgroup (4-severe) showed significantly (P < 0.05) lower levels of total bilirubin when compared with the subgroup (1-mild).

Conclusions

TB level was negatively correlated with left ventricular diastolic dysfunction in heart failure patients with a preserved left ventricular ejection fraction, which might provide a new insight into the complicated mechanisms of heart failure with a preserved left ventricular ejection fraction.  相似文献   

18.
Infection by tailed dsDNA phages is initiated by release of the viral DNA from the capsid and its polarized injection into the host. The driving force for the genome transport remains poorly defined. Among many hypothesis [1], it has been proposed that the internal pressure built up during packaging of the DNA in the capsid is responsible for its injection [2-4]. Whether the energy stored during packaging is sufficient to cause full DNA ejection or only to initiate the process was tested on phage T5 whose DNA (121,400 bp) can be released in vitro by mere interaction of the phage with its E. coli membrane receptor FhuA [5-7]. We present a fluorescence microscopy study investigating in real time the dynamics of DNA ejection from single T5 phages adsorbed onto a microfluidic cell. The ejected DNA was fluorescently stained, and its length was measured at different stages of the ejection after being stretched in a hydrodynamic flow. We conclude that DNA release is not an all-or-none process but occurs in a stepwise fashion and at a rate reaching 75,000 bp/sec. The relevance of this stepwise ejection to the in vivo DNA transfer is discussed.  相似文献   

19.
According to the obtained experimental results, the thermal shock (from 37 to 53 °C) not only stops the multiplication process of Escherichia coli bacteria, but also causes bacterial titer to decrease gradually. After this period lasting up to 1 hour, the bacterial cells continue to grow. A similar type of response was observed when bacteria were subjected to acid shock. Increasing acidity of media leads to decrease of bacterial growth process, and finally, their titer curve sharply falls over time. Also, interesting results were obtained about necessary conditions for infecting the bacteria by phages. Particularly, DNA injection from phages into bacterial cells requires most of corresponding bacterial membrane receptors to be occupied by phages. We suppose that this occurs due to autocrine phenomenon when the signaling molecules block the DNA ejection from phage particles. This effect lasts until a certain number of phage particles are attached to the membrane. After that, DNA injection from phage head into the cytoplasm takes place and the process of bacterial infection begins. The real number of phages in a stock is by several orders higher than the number of plaque-forming units in a given stock, which is determined by a classical double-layer agar method.  相似文献   

20.
The influence of prostaglandins (PG) F2α and E2 on milk ejection, mammary artery blood flow and arterial blood pressure was studied in lactating cows. Injections of both PG in the jugular vein or the carotid artery induced milk ejection after a relatively long latency period. The minimal effective dose amounted to 1 to 5 μg and to 100 to 300 μg for PGF2α and PGE2 respectively. In several cases with PGF2α and once with PGE2 milk ejection was accompanied with a simultaneous increase in blood flow through the mammary artery whereas arterial blood pressure remained unchanged. Both routes of administration showed the same response. It was suggested that the effect of the PG on the bovine myoepithelium is indirect, possibly secondary to a release of oxytocin from the neurohypophysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号