首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In the present study we analysed the effect of endogenous sex hormones on the SCE frequencies induced in vitro by mitomycin C (MMC), a bifunctional alkylating agent producing high chromosome damage and mitotic arrest. The analysis has been performed on lymphocytes obtained at three different phases of menstrual cycle, from women with regular cycle and hormones dosage. At all phases we further analysed the effect of a post-treatment with caffeine, an agent that it is known to overrride the DNA damage checkpoints.

After MMC, the cultures obtained at ovulation and luteal phases have SCE frequencies statistically higher than the cultures obtained at the progestogenic phase, showing increases of 15 and 25%, respectively. After caffeine, the MMC treated cultures which were set up at the progestogenic phase show a high potentiation of SCE frequencies (28%) whereas the treated cultures set up at ovulatory and luteal phases show little or no potentiation.

These findings demonstrate that the endogenous hormones greatly modulate the SCE frequencies induced by the mutagen; they also indicate that hormones action competes with the caffeine effect. Caffeine acts by abrogating the mitotic arrest produced by DNA damage and induced cells with a higher chromosome damage into a premature mitosis. Our findings suggest that endogenous hormones could overcome the checkpoint controls activated in cells after mutagenic exposure. This action may be an epigenetic mechanism relevant in hormone carcinogenesis.  相似文献   


2.
Chromosome damage induced in root meristems of Allium cepa L. by an 18-h treatment with 5-aminouracil (AU) was enhanced by 2-h pulses with 5 mM caffeine, the most effective pulse being given from the 8th to the 10th h after AU. Chromosome damage was detected by the percentage of anaphases or telophases showing chromosomal aberrations. This caffeine effect was partially reversed by adenosine. We suggest that this caffeine anti-repair effect could be due to a competition between methylxanthine and an adenine-nucleotide derivative (ATP?) required for some step(s) of G2-prophase repair.  相似文献   

3.
Caffeine (10(-2) M) induced a high level of chromatid aberrations in neural ganglia of third-instar larvae of Drosophila melanogaster only when it was added to cells in late G2 and mitotic prophase. No aberrations were observed after treatment in late S--middle G2 or C-mitosis. We observed that, in these stages, caffeine strongly increased X-ray-induced damage (500 R). This potentiation was quantitatively similar. But it involved all types of aberration after treatment in C-mitosis, and essentially isochromatid deletions and chromatid exchanges after treatment in S--G2. Some hypotheses are put forth to explain the possible mechanism of action of caffeine in the potentiation of X-ray-induced damage.  相似文献   

4.
Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from the early spermatid to late spermatocyte stage with X-irradiation of 4 Gy (16-20 days after X-irradiation) was markedly higher than that in the eggs fertilized with sperm recovered from spermatozoa to late spermatid stage (0-8 days after X-irradiation). The induced chromosome aberrations predominantly consisted of chromosome-type aberrations, the main type being chromosome fragment followed by chromosome exchange through all the spermiogenic stages. On the other hand, a high frequency of chromosome aberrations was not induced through all the stages with MMC treatment of 5 mg/kg. The remarkable potentiation effects of 3AB and caffeine were found in the eggs fertilized with sperm recovered from almost all the spermiogenic stages after X-irradiation. In the MMC treatment, a remarkable caffeine effect was observed occasionally in mid-early spermatids to late spermatocytes where a large amount of MMC damage could be induced. These results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs.  相似文献   

5.
X-Ray-induced chromosomal aberrations (CA) were potentiated by post-treatments in G2 with either caffeine (caff) or poly-D-lysine (PDL) in root-tip cells of Allium cepa. The enhancement of the yield of CA was concomitant with an increase in the frequency of mitosis. Our results seem to support the idea of a direct relationship between radiation-induced G2 delay and repair of chromosome damage. Here we report on similarities between caffeine and PDL in both decreasing G2 delay and enhancing chromatid aberration yield. The possible molecular mechanism(s) of action responsible for the cytogenetic effects observed are discussed.  相似文献   

6.
The effect of caffeine and cycloheximide during the G2 phase on frequency of chromosomal aberrations and G2 duration was studied in control and X-ray-irradiated human lymphocytes in vitro. Caffeine treatments alone increase the frequencies of chromatid breakage and decrease the average G2 duration in control and X-ray-irradiated lymphocytes (40 R). Both caffeine effects are reversed by 0.5 micrograms/ml cycloheximide in combination treatments. Cycloheximide treatments alone prolong G2 duration in control as well as in X-ray-irradiated lymphocytes although no improvement in chromosome repairing by this inhibitor of protein synthesis was observed under the conditions of our experiments. We propose that the cycloheximide effect is associated with a low level of mitotic factors, required for the entrance into mitosis, which is maintained at a higher level in caffeine treatment alone. Finally, G2 delay has generally been associated with certain genome damage. The fact that the caffeine and cycloheximide effects on X-irradiated lymphocytes are also present in control lymphocytes (without X-rays) suggests that control of the G2 duration constitutes one of the mechanisms involved in DNA repair operating during the G2 phase.  相似文献   

7.
Summary Laser UV microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: I) intact metaphase figures, II) chromosome damage confined to a small area of the metaphase spread, III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus.  相似文献   

8.
UV micro-irradiation of a small part of the Chinese hamster nucleus and caffeine post-incubation often results in shattered chromosomes at the first post-irradiation mitosis. In some of these mitotic cells, chromosome shattering is restricted to a few chromosomes spatially related in a small area of the metaphase spread; in others, shattering includes the whole chromosome complement. These 2 types of damage have been called partial and generalized chromosome shattering (PCS and GCS).Using antisera that specifically react with UV-irradiated DNA, we identified micro-irradiated chromatin in interphase nuclei and in mitotic cells with PCS or GCS by indirect immunofluorescence microscopy. In PCS, immunofluorescence staining was found in the damaged area, while the surrounding intact chromosomes were not stained. In GCS, staining was also restricted to a small region of the shattered chromosome complement. In other experiments, cells synchronized in G1 were micro-irradiated in the nucleus, pulse-labelled with [3H]thymidine and post-incubated with caffeine. Autoradiographs of cells with GCS showed unscheduled DNA synthesis restricted to a small chromatin region.Our data present direct evidence that the distribution of DNA photolesions does not coincide with the sites of chromosomal damage in GCS. As a working hypothesis, we propose that an indirect mechanism is involved in the induction of GCS by which DNA photolesions in a small nuclear segment induce shattering of both micro-irradiated and non-irradiated chromosomes.  相似文献   

9.
Cell-cycle kinetics, sister-chromatid exchange (SCE) and chromosome aberrations have been studied from the skin fibroblasts of the Indian muntjac after treatment with 100 micrograms/ml of caffeine and 0.05 microgram/ml of anthramycin. The cultures were incubated for a period which was sufficient for the completion of two consecutive cell cycles and both the drugs appeared to produce a slight inhibitory effect. When anthramycin-treated cells were however post-treated with caffeine, the cells did not proceed beyond one cycle and exhibited a mitotic block. The SCE frequency in the control and the experiments with caffeine and anthramycin was 8.63, 18.32 and 34.88 per cell respectively. The SCEs were randomly distributed amongst all chromosomes unlike a non-random distribution within the X chromosomes. Caffeine and anthramycin produced only 0.5% and 3.1 cells with chromosome aberrations respectively. Potentiation of chromosome aberrations was observed when the anthramycin-treated cells were post-treated with caffeine. Caffeine potentiation presumably results from an inhibition of the cells to cycle and a failure to repair the effect of the mutagen on DNA.  相似文献   

10.
In order to understand the relationship between the chromosomal damage detectable at the first mitosis after mutagen treatment and the induced mitotic delay we studied the time pattern of both mitotic indices and chromosomal aberration frequencies in human lymphocytes treated in G1 with mitomycin C (2.5 microM) and cultured in vitro in the presence of 5-bromo-2'-deoxyuridine. Mitotic delay was observed in treated cells cultured for 81 h. At this point an increase in the frequency of chromosomal aberrations is evident and a higher proportion of abnormal cells enters mitosis, the long delay being due to the extensiveness of DNA damage. The importance of cell cycle progression for the detection of the maximal amount of induced chromosomal damage is discussed.  相似文献   

11.
Choi E  Lee H 《FEBS letters》2008,582(12):1700-1706
The effect of double-strand DNA breaks (DSBs) on the spindle assembly checkpoint (SAC) has important implications with respect to the relationship between SAC function and chromosome instability of cancer cells. Here, we demonstrate that induction of DSBs in mitosis results in prolonged hyper-phosphorylation of the SAC protein BubR1 and association of BubR1 with kinetochores in mammalian cells. Combining single cell time-lapse microscopy with immunofluorescence, flow cytometry, and Western blot analysis in synchronized cells, we provide evidence that DSBs activate BubR1, leading to prometaphase arrest. Accordingly, elimination of BubR1 expression by siRNA resulted in the abrogation of mitotic delay in response to chromosome damage. These results suggest that BubR1 links DNA damage to kinetochore-associated SAC function.  相似文献   

12.
The induction of chromosome damage in cultured human lymphocytes by in vitro treatments with aphidicolin (APC) and bleomycin (BLM) has been proposed as test of sensitivity to mutagens. To assess their validity, we have investigated whether the individual expression of induced chromosome damage has a genetic rather than an environmental basis. Metaphase analysis for chromosomal aberrations (CA) and micronucleus (MN) assay in cytokinesis-blocked cells have been performed in peripheral blood lymphocytes from 19 healthy male twins (9 monozygotic and 10 dizygotic pairs), aged 70-78 years, after APC, BLM and APC+BLM treatments.Concordance between twins revealed a high genetic component in the sensitivity towards clastogenic action of APC both as percentages of CA and MN. The micronucleus assay demonstrated a genetic basis also in the expression of chromosome damage induced by BLM and APC+BLM treatments. Since twins were elderly people, to investigate the possible role of age, CA and MN frequencies were compared with those found in lymphocytes from 11 young male donors. Basal and APC-induced chromosome damage were clearly increased in the former. Following BLM and APC+BLM treatments, age significantly increased mitotic delay, as shown by the mitotic indexes (MI) and by the ratios between binucleated and mononucleated (B/M) cells.  相似文献   

13.
The genetic elimination of A2A adenosine receptors (A2AR) was shown to disengage the critical immunosuppressive mechanism and cause the dramatic exacerbation of acute inflammatory tissue damage by T cells and myeloid cells. This prompted the evaluation of the proinflammatory vs the anti-inflammatory effects of the widely consumed behavioral drug caffeine, as the psychoactive effects of caffeine are mediated largely by its antagonistic action on A2AR in the brain. Because caffeine has other biochemical targets besides A2AR, it was important to test whether the consumption of caffeine during an acute inflammation episode would lead to the exacerbation of immune-mediated tissue damage. We examined acute and chronic treatment with caffeine for its effects on acute liver inflammation. It is shown that caffeine at lower doses (10 and 20 mg/kg) strongly exacerbated acute liver damage and increased levels of proinflammatory cytokines. Because caffeine did not enhance liver damage in A2AR-deficient mice, we suggest that the potentiation of liver inflammation was mediated by interference with the A2AR-mediated tissue-protecting mechanism. In contrast, a high dose of caffeine (100 mg/kg) completely blocked both liver damage and proinflammatory cytokine responses through an A2AR-independent mechanism. Furthermore, caffeine administration exacerbated liver damage even when mice consumed caffeine chronically, although the extent of exacerbation was less than in "naive" mice that did not consume caffeine before. This study suggests an unappreciated "man-made" immunological pathogenesis whereby consumption of the food-, beverage-, and medication-derived adenosine receptor antagonists may modify an individual's inflammatory status and lead to excessive organ damage during acute inflammation.  相似文献   

14.
Chinese hamster cells in vitro were double labeled with C(14)TdR and H(3)TdR. At the time of irradiation with Co(60) gamma rays (600 rad), the cells in the G(2) phase were labeled only with C(14), whereas cells in the late and middle S phases were labeled with both C(14) and H(3). The cells in early S phase were labeled only with H(3) and the G(1) cells were unlabeled. Samples were fixed at various time intervals following irradiation and the metaphases were analyzed for chromosomal damage. The phase in which the cell was located at the time of irradiation was determined by counting grains in the first and second layers of autoradiographic film. In both control and irradiated cells some G(1) cells divided prior to some of the cells which were in the S phase denoting mixing of the populations. The G(2) phase sustained three times more chromosomal damage than the S phase. Little difference in chromosomal damage was found between the G(1) and S phases or among the different parts of the S phase. Cells in G(2) sustained a mitotic delay of 4 hr, while the other phases sustained a delay of 2 to 3 hr. Chromatid and chromosome (dicentrics) exchanges were induced in G(1) cells but only chromatid exchanges were induced in S and G(2) cells; this is consistent with the hypothesis that the chromosome consists of two subunits which separate either slightly before or immediately as the cell enters the S phase.  相似文献   

15.
BACKGROUND: In response to DNA damage, fission yeast, mammalian cells, and cells of the Drosophila gastrula inhibit Cdk1 to delay the entry into mitosis. In contrast, budding yeast delays metaphase-anaphase transition by stabilization of an anaphase inhibitor, Pds1p. A variation of the second response is seen in Drosophila cleavage embryos; when nuclei enter mitosis with damaged DNA, centrosomes lose gamma-tubulin, spindles lose astral microtubules, chromosomes fail to reach a metaphase configuration, and interphase resumes without an intervening anaphase. The resulting polyploid nuclei are eliminated. RESULTS: The cells of the Drosophila gastrula can also delay metaphase-anaphase transition in response to DNA damage. This delay accompanies the stabilization of Cyclin A, a known inhibitor of sister chromosome separation in Drosophila. Unlike in cleavage embryos, gamma-tubulin remains at the spindle poles, and anaphase always occurs after the delay. Cyclin A mutants fail to delay metaphase-anaphase transition after irradiation and show an increased frequency of chromosome breakage in the subsequent anaphase. CONCLUSIONS: DNA damage delays metaphase-anaphase transition in Drosophila by stabilizing Cyclin A. This delay may normally serve to preserve chromosomal integrity during segregation. To our knowledge this is the first report of a metazoan metaphase-anaphase transition being delayed in response to DNA damage. Though mitotic progression is modulated in response to DNA damage in both cleaving and gastruating embryos of Drosophila, different mechanisms operate. These differences are discussed in the context of differential cell cycle regulation in cleavage and gastrula stages.  相似文献   

16.
Caffeine has been reported to induce premature chromosome condensation (PCC) in S-phase cells in the presence of an inhibitor of DNA synthesis. We found that when S-phase cells are treated with caffeine and hydroxyurea after X irradiation, substantially more potentially lethal damage (PLD) is expressed, but the addition of cycloheximide, which inhibits PCC induction in S-phase cells, in the presence of caffeine and hydroxyurea reduces the expression of PLD to the same level as seen with caffeine alone. This can be interpreted to mean that the expression of PLD seen with caffeine in the absence of an inhibitor of DNA synthesis is not associated with chromosome condensation. Evidence that PCC induction in S-phase cells and the influence of caffeine on PLD expression were suppressed by incubation at 40 degrees C of tsBN75 cells with a ts defect in ubiquitin-activating enzyme indicates the involvement of ubiquitin in these two processes. These observations as well as previous findings on ubiquitin suggest to us that caffeine induces changes in DNA-chromatin conformation, which are caused by induction of PCC or ubiquitination of chromosomal protein. Such changes occurring postirradiation would favor expression of PLD.  相似文献   

17.
Chromosomes in PTEN deficient cells display both numerical as well as structural alterations including regional amplification. We found that PTEN deficient cells displayed a normal DNA damage response (DDR) as evidenced by the ionizing radiation (IR)-induced phosphorylation of Ataxia Telangiectasia Mutated (ATM) as well as its effectors. PTEN deficient cells also had no defect in Rad51 expression or DNA damage repair kinetics post irradiation. In contrast, caffeine treatment specifically increased IR-induced chromosome aberrations and mitotic index only in cells with PTEN, and not in cells deficient for PTEN, suggesting that their checkpoints were defective. Furthermore, PTEN-deficient cells were unable to maintain active spindle checkpoint after taxol treatment. Genomic instability in PTEN deficient cells could not be attributed to lack of PTEN at centromeres, since no interaction was detected between centromeric DNA and PTEN in wild type cells. These results indicate that PTEN deficiency alters multiple cell cycle checkpoints possibly leaving less time for DNA damage repair and/or chromosome segregation as evidenced by the increased structural as well as numerical alterations seen in PTEN deficient cells.  相似文献   

18.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


19.
The anti-tumor agent cis platinum (II) diammine dichloride (cis Pt(II)) caused chromosomal abnormalities in Chinese hamster V79-379A cells. The time of appearance of these abnormalities suggested that they arise as a consequence of DNA synthesis on a damaged template. The yield and severity of chromosomal abnormalities was greatly enhanced by a non-toxic concentration of caffeine, and this enhancement was associated with a potentiation of cis Pt(II) induced cell death. These results suggest that damage to DNA which arises from cis Pt(II) treatment can be repaired in this cell line by a caffeine-sensitive post-replication repair process.  相似文献   

20.
Chromosome shattering has been described as a special form of mitotic catastrophe, which occurs in cells with unrepaired DNA damage. The shattered chromosome phenotype was detected after application of a methanol/acetic acid (MAA) fixation protocol routinely used for the preparation of metaphase spreads. The corresponding phenotype in the living cell and the mechanism leading to this mitotic catastrophe have remained speculative so far. In the present study, we used V79 Chinese hamster cells, stably transfected with histone H2BmRFP for live-cell observations, and induced generalized chromosome shattering (GCS) by the synergistic effect of UV irradiation and caffeine posttreatment. We demonstrate that GCS can be derived from abnormal mitotic cells with a parachute-like chromatin configuration (PALCC) consisting of a bulky chromatin mass and extended chromatin fibers that tether centromeres at a remote, yet normally shaped spindle apparatus. This result hints at a chromosome condensation failure, yielding a “shattered” chromosome complement after MAA fixation. Live mitotic cells with PALCCs proceeded to interphase within a period similar to normal mitotic cells but did not divide. Instead they formed cells with highly abnormal nuclear configurations subject to apoptosis after several hours. We propose a factor depletion model where a limited pool of proteins is involved both in DNA repair and chromatin condensation. Chromosome condensation failure occurs when this pool becomes depleted. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This article has been submitted as a contribution to the festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号