首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT. Extracts of corpora cardiaca from two cockroaches, Nauphoeta cinerea Olivier and Leucophaea maderae F., from a cricket, Gryllus bimaculatus De Geer, from the Colorado potato beetle, Leptinotarsa decemlineata Say, and from the sphinx moth, Sphinx ligustri L. were assayed for adipokinetic and hypertrehalosaemic activity, in acceptor locusts ( Locusta migratoria L.) and cockroaches ( Periplaneta americana L.) respectively. Both bioassays give positive results with all corpus cardiacum material tested except that from the sphinx moth; in this insect haemolymph lipid concentrations (but not those of the total carbohydrate) are, however, increased after injection of an extract of corpora cardiaca from the same species. A similar result is obtained when specimens of G. bimaculatus are injected with an extract of corpora cardiaca from G. bimaculatus. Biological activities of corpus cardiacum extracts from all species investigated can be resolved on reversed-phase high-performance liquid chromatography. Gland extracts from the two cockroach species each show a single absorbance peak which has hypertrehalosaemic activity, but with a (common) retention time distinct from all previously described arthropod neuropeptides. The corpora cardiaca of G. bimaculatus contain also a novel adipokinetic factor with a retention time distinct from previously characterized arthropod hormones, as well as from the new cockroach factor described in this study. The two hypertrehalosaemic factors from the corpora cardiaca of the potato beetle coelute with the hypertrehalosaemic hormones I and II of the American cockroach. The active (adipokinetic) compound from glands of S. ligustri appears to coelute with locust adipokinetic hormone I.  相似文献   

2.
The corpora cardiaca (CC) of the Italian race (including also the africanised variety) of the honeybee (Apis mellifera ligustica) contain approximately 3 pmol of a hypertrehalosaemic peptide. This peptide is identical in structure to the adipokinetic hormone (AKH) found in Manduca sexta, Mas-AKH. The CC of the dark European race of the honeybee (Apis mellifera carnica) contain no detectable Mas-AKH or any other adipokinetic/hypertrehalosaemic peptide. This is the first report of the occurrence of this peptide in a non-lepidopteran insect and of an intraspecific variation with regards to the presence or absence of a hypertrehalosaemic peptide in the CC of an insect. Extracts of A. m. ligustica CC elicit a strong adipokinetic/hypertrehalosaemic response when injected into crickets and cockroaches but extracts of A. m. carnica CC elicit no such responses when injected into crickets, cockroaches and butterflies. A weak hypertrehalosaemic response to injected Mas-AKH was observed in winter bees of both races, but there was no response in spring/summer bees. However, if a seasonal difference exists, it is at best minimal. Honeybees always have access to a more than adequate supply of high energy food in the form of nectar or honey stored in the hive. Thus, though A. m. ligustica CC contain a hypertrehalosaemic peptide, there is neither a glycogen-mobilising function of this hormone nor an adequate glycogen store in their fat body for its effective utilisation.  相似文献   

3.
A neuropeptide with adipokinetic activity in Locusta migratoria and hypertrehalosaemic activity in Periplaneta americana was purified by reversed-phase high performance liquid chromatography from the corpus cardiacum of the dragonfly, Libellula auripennis. After brief enzymatic digestion by 5-oxoprolyl-peptidase the primary structure of the peptide was determined by pulsed-liquid phase sequencing employing Edman degradation. As the peptide was not cleaved by carboxypeptidase the C-terminus was blocked, too. The peptide was assigned as a blocked uncharged octapeptide: Glu-Val-Asn-Phe-Thr-Pro-Ser-TrpNH2. The synthetic peptide was chromatographically indistinguishable from the natural compound and, upon injection in low quantities into dragonflies, elicited mainly haemolymph lipids. Therefore it is called dragonfly adipokinetic hormone (Lia-AKH). It is a new member of the large AKH/RPCH family of peptides. Because of its structural features and its origin from a very primitive insect order it is assumed to represent the putative ancestral peptide of this family. Synthesis was shown to occur in the corpus cardiacum by in vitro incorporation of tritium-labelled Trp into Lia-AKH.  相似文献   

4.
A neuropeptide with adipokinetic activity in Locusta migratoria and the mantid Empusa pennata, and hypertrehalosaemic activity in Periplaneta americana, was isolated by reversed-phase high performance liquid chromatography from corpora cardiaca of the mantids E. pennata and Sphodromantis sp. After brief enzymatic digestion by 5-oxoprolylpeptidase the primary structure of the peptide of each species was determined by pulsed-liquid phase sequencing employing Edman degradation. The C-terminus of both peptides was blocked, as indicated by the lack of digestion with carboxypeptidase A. The peptides of both species were identical: a blocked, uncharged octapeptide with the sequence L-Glu-Val-Asn-Phe-Thr-Pro-Asn-Trp-NH2. The peptide is now called mantid adipokinetic hormone (Emp-AKH). The synthetic peptide was chromatographically indistinguishable from the natural compound and increased blood lipids in locusts and blood carbohydrates in cockroaches when administered in low doses. The structural features clearly define the peptide as a novel member of the large AKH/RPCH-family of peptides. Seven amino-acid residues are at identical positions in Emp-AKH when compared with the adipokinetic hormone of a dragonfly (Lia-AKH) and the hypertrehalosaemic hormone I from the American cockroach (Pea-CAH-I). Evolutionary relationships to other insect orders are discussed.  相似文献   

5.
Two neuropeptides with adipokinetic activity in Locusta migratoria and hypertrehalosaemic activity in Periplaneta americana were purified by high-performance liquid chromatography from the corpus cardiacum of the lubber grasshopper, Romalea microptera. The sequences of both peptides, designated Ro I and Ro II, were determined by gas-phase sequencing employing Edman degradation after the N-terminal pyroglutamate residue was enzymatically deblocked, as well as by fast atom bombardment mass spectrometry. Ro I was found to be a decapeptide with the primary structure: pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2, whereas Ro II is an octapeptide with the structure: pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp-NH2. Ro II is identical with AKH-G isolated from the cricket Gryllus bimaculatus. Synthetic materials having the assigned structures were found to be chromatographically, mass spectrometrically, and biologically indistinguishable from the natural peptides, confirming the sequences and establishing the Romalea peptides as members of the AKH/RPCH-family of peptides.  相似文献   

6.
The separation of two peptides with hypertrehalosaemic activity from the corpus cardiacum of the Indian stick insect, Carausius morosus, was achieved by reversed-phase high-performance liquid chromatography using a Nucleosil C-18 column with a trifluoroacetic acid/acetonitrile gradient. The eluant was monitored at 210 nm and the hypertrehalosaemic activity was detected in ligated stick insects using a bioassay. In addition, the isolated material was potent in causing hyperlipaemia in migratory locusts and also in raising blood carbohydrates in the American cockroach. The amino-acid composition of the major peptide, hypertrehalosaemic factor II, was determined after acid hydrolysis with HCl or methanesulfonic acid. The analyses suggest that factor II is a nonapeptide which contains the following amino-acid residues: Asp, 2 Thr, Glu, Pro, Gly, Leu, Phe and Trp. This composition is almost identical to that of locust adipokinetic hormone I, lacking only one Asp residue.  相似文献   

7.
A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named 'Phormia terraenovae hypertrehalosaemic hormone' (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species.  相似文献   

8.
Siegert KJ 《FEBS letters》1999,447(2-3):237-240
A neuropeptide from the migratory locust, Locusta migratoria, has been identified as a novel member of the family of adipokinetic hormones (AKHs). The peptide is probably synthesised in the brain because it is the first AKH found in the storage lobe, whilst the three 'classic' Locusta AKHs are present in the glandular lobe of the corpora cardiaca. In locusts, the peptide has no biological activity usually associated with AKHs. There is only 36-56% sequence identity with the three Lom-AKHs, but 78% identity with the Drosophila melanogaster AKH, Drm-HrTH. The new peptide is active in the American cockroach, Periplaneta americana, and was provisionally named 'L. migratoria hypertrehalosaemic hormone', Lom-HrTH; its biological role in locusts remains to be established. The high degree of identity with Drm-HrTH suggests that Lom-HrTH is an ancient molecule.  相似文献   

9.
Through understanding the mechanisms by which tsetse endosymbionts potentiate trypanosome susceptibility in tsetse, it may be possible to engineer modified endosymbionts which, when introduced into tsetse, render these insects incapable of transmitting parasites. In this study we have assayed the effect of three different antibiotics on the endosymbiotic microflora of tsetse (Glossina morsitans morsitans). We showed that the broad-spectrum antibiotics, ampicillin and tetracycline, have a dramatic impact on tsetse fecundity and pupal emergence, effectively rendering these insects sterile. This results from the loss of the tsetse primary endosymbiont, Wigglesworthia glossinidia, which is eradicated by ampicillin and tetracycline treatment. Using the sugar analogue and antibiotic, streptozotocin, we demonstrated specific elimination of the tsetse secondary endosymbiont, Sodalis glossinidius, with no observed detrimental effect upon W. glossinidia. The specific eradication of S. glossinidius had a negligible effect upon the reproductive capability of tsetse but did effect a significant reduction in fly longevity. Furthermore, elimination of S. glossinidius resulted in increased refractoriness to trypanosome infection in tsetse, providing further evidence that S. glossinidius plays an important role in potentiating trypanosome susceptibility in this important disease vector. In the light of these findings, we highlight progress made towards developing recombinant Sodalis strains engineered to avoid potentiating trypanosome susceptibility in tsetse. In particular, we focus on the chitinase/N-acetyl-D-glucosamine catabolic machinery of Sodalis which has previously been implicated in causing immune inhibition in tsetse.  相似文献   

10.
Corpus cardiacum extracts from the phasmids, Carausius morosus, Cuniculina impigra, Sipyloidea sipylus, Acrophylla wuelfingi, Eurycantha goliath, Bacillus rossius and Extatosoma tiaratum, from the Orthopterans, Locusta migratoria and Gryllus bimaculatus, from the Dictyopterans, Periplaneta americana, Gromphadorrhina coquereliana and Blaberus craniifer, from the Coleopterans Tenebrio molitor and Pachnoda sp., synthetic adipokinetic hormone and synthetic crustacean red pigment-concentrating hormone (RPCH) were injected into locusts, cockroaches and ligated stick insects as bioassay systems for adipokinetic and hyperglycaemic substances, respectively. The locust and cockroach bioassay gave positive results with all corpus cardiacum material tested (however the lipid response in locusts upon injection of T. molitor corpus cardiacum extract was very poor). The stick insect bioassay was quite specific for stick insect corpus cardiacum material; only corpus cardiacum extracts from a few other species (G. bimaculatus, P. americana, G. coquereliana and Pachnoda sp.) showed weak activity. All other extracts, including synthetic adipokinetic hormone and RPCH, failed to induce a response.Separations of corpus cardiacum extracts from L. migratoria, P. americana, T. molitor, C. morosus and S. sipylus were achieved on reversed-phase high-performance liquid chromatography (RP-HPLC). Locust corpus cardiacum extract showed two absorbance peaks with adipokinetic activity, adipokinetic hormones I and II. The peaks with hyperglycaemic activity from P. americana corpus cardiacum extracts had different retention times to those of locust adipokinetic hormones I and II. Stick insect corpus cardiacum extracts revealed also 2 absorbance peaks with adipokinetic activity, the major one co-eluting with RPCH. The active compound from corpus cardiacum extracts of T. molitor appeared to elute close to locust adipokinetic hormone I.  相似文献   

11.
Dippu-allatostatins (ASTs) have pleiotropic effects in Locusta migratoria. Dippu-ASTs act as releasing factors for adipokinetic hormone I (AKH I) from the corpus cardiacum (CC) and also alter juvenile hormone (JH) biosynthesis and release from the corpus allatum (CA). Dippu-AST-like immunoreactivity is found within lateral neurosecretory cells (LNCs) of the brain and axons within the paired nervi corporis cardiaci II (NCC II) to the CC and the CA, where there are extensive processes and nerve endings over both of these neuroendocrine organs. There was co-localization of Dippu-AST-like and proctolin-like immunoreactivity within these regions. Dippu-ASTs increase the release of AKH I in a dose-dependent manner, with thresholds below 10(-11)M (Dippu-AST 7) and between 10(-13) and 10(-12)M (Dippu-AST 2). Both proctolin and Dippu-AST 2 caused an increase in the cAMP content of the glandular lobe of the CC. Dippu-AST 2 also altered the release of JH from the locust CA, but this effect depended on the concentration of peptide and the basal release rates of the CA. These physiological effects for Dippu-ASTs in Locusta have not been shown previously.  相似文献   

12.
Gerd Gde  Roland Kellner 《Peptides》1989,10(6):1287-1289
Two neuropeptides with adipokinetic activity in Locusta migratoria and hypertrehalosaemic activity in Periplaneta americana were purified by high performance liquid chromatography from the corpus cardiacum of the Colorado potato beetle, Leptinotarsa decemlineata. The sequences of both peptides, designated Led-CC-I and Led-CC-II, were determined by pulsed-liquid phase sequencing employing Edman degradation after deblocking enzymatically the N-terminal pyroglutamate residue. The C-terminal of both peptides were blocked and neither molecule was cleaved by carboxypeptidase. Both peptides were found to be octapeptides; Led-CC-I has the primary structure pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp-NH2, and Led-CC-II has the primary sequence pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-NH2. These structures are identical to the two hypertrehalosaemic hormones from the American cockroach. Preliminary experiments show that the synthetic peptides are apparently involved in the control of amino acid metabolism during flight of the potato beetle.  相似文献   

13.
The corpora cardiaca of the African pyrgomorphid grasshoppers Phymateus morbillosus and Dictyophorus spumans contain three adipokinetic hormones (AKHs): besides two already known AKHs, Phm-AKH-I and Scg-AKH-II (G?de et al., 1996 [G?de, G., Kellner, R., Rinehart, K.L., 1996. Pyrgomorphid grasshoppers of the genus Phymateus contain species-specific decapeptides of the AKH/RPCH family regulating lipid-mobilisation during flight. Physiol. Entomol. 21, 193-202]), a new AKH-III, denoted Phm-AKH-III, pGlu-Ile-Asn-Phe-Thr-Pro-Trp-Trp-NH(2), has been characterised. This is only the second AKH-III identified so far, thus, only three insect species - all of them grasshoppers - contain three active AKHs. Phm-AKH-III differs from Lom-AKH-III from the migratory locust, Locusta migratoria, only in position 2: isoleucine is present instead of leucine. The structure of the Phm-AKH-III was confirmed by synthesis, subsequent mass determination and reversed-phase high-performance liquid chromatography. The synthetic peptide also induced hyperlipaemia in D. spumans and L. migratoria.  相似文献   

14.
1. Lipophorin was isolated from the haemolymph of adult tsetse fly, Glossina morsitans morsitans, by ultracentrifugation in a potassium bromide density gradient. 2. The tsetse fly lipophorin (Mr congruent to 600,000) has a density of congruent to 1.11 g/ml and consists of two apoproteins, apolipophorin-I (apoLp-I, Mr congruent to 250,000) and apolipophorin-II (apoLp-II, Mr congruent to 80,000), both of which are glycosylated as shown by staining with periodate-Schiff reagent. The protein complex is composed of 49% protein and 51% lipids. 3. The finding of lipophorin in tsetse fly haemolymph suggests that, although these flies primarily utilize proline for their energy needs, there is an active transport mechanism for the supply of lipid requirements.  相似文献   

15.
Immunoreactivity of granules containing secretory material in the adipokinetic cells of the insect Locusta migratoria was studied using antisera specific for the adipokinetic hormone-associated peptides (AAP) I, II and III. Immunocytochemical detection of these associated peptides represents a new strategy for studying the intracellular location of the adipokinetic hormones and their prohormones. Fixation with 2% glutaraldehyde and 2% formaldehyde with low-temperature embedding in Lowicryl HM20 allowed highly selective immunogold labelling of both secretory and intracisternal granules. All three associated peptides were co-localized in secretory granules. This indicates that also all three adipokinetic hormones can be co-localized in these granules, which was confirmed by experiments in which, after secretory stimulation, adipokinetic hormone III was released from the adipokinetic cells together with adipokinetic hormones I and II. The immunopositivity of the intracisternal granules was similar to that of the secretory granules, although with the exception that the intracisternal granules did not show any specific reaction with anti-AAP III. The presence of AAP I and AAP II in intracisternal granules indicates that these granules only function as stores of adipokinetic prohormones I and II and not of adipokinetic prohormone III. The observed differences in storage in intracisternal granules among the three adipokinetic prohormones suggest differences in physiological significance of the three adipokinetic hormones in L. migratoria.  相似文献   

16.
Fractionation of methanol extracts of perfusate and haemolymph on thin-layer chromatography was used to separate hormones associated with haemolymph lipid regulation in Locusta. Electrical stimulation of the nervi corporis cardiaci II (NCC II) of isolated corpora cardiaca resulted in the release of three hormones into the perfusate; hypolipaemic hormone and two adipokinetic hormones. The two adipokinetic hormones co-migrated with synthetic adipokinetic hormone (adipokinetic hormone I) and with the RF value similar to Carlsen's peptide (adipokinetic hormone II).These two adipokinetic hormones were also present in small amounts in the haemolymph of unflown Locusta, and shown to be released during a 30-min flight. The adipokinetic hormone II fraction from the NCC II-stimulated perfusate and haemolymph also possessed hyperglycaemic activity when assayed in ligated locusts.It is concluded that NCC II controls the release of adipokinetic hormones during flight and that two adipokinetic hormones are released during flight. One of these hormones adipokinetic hormone II also acts as a hyperglycaemic hormone illustrating that a hyperglycaemic hormone is released, during flight.  相似文献   

17.
ABSTRACT. The corpora cardiaca of the stick insect, Sipyloidea sipylus Westwood, contain peptidic material which elevates blood lipids in migratory locusts, blood carbohydrates in American cockroaches, and activates glycogen phosphorylase in the fat body of the cockroach in a time- and dose-dependent manner. The active principle is found in appreciable amounts only in the corpora cardiaca; slight hyperlipaemia is caused by extracts made from corpora allata and abdominal ganglia, whereas brain, suboesophageal and thoracic ganglia are not active. The adipokinetic activity is already present in corpora cardiaca from second instar (first day) nymphs. The factor retains its adipokinetic activity after boiling for up to 1 h. Conspecific injections of extracts from corpora cardiaca of S.sipylus cause hypertrehalosaemia in ligated stick insects and activate glycogen phosphorylase in non-ligated S.sipylus. After incubation of corpora cardiaca in vitro in saline with high concentrations of potassium and calcium, one fraction with adipokinetic (in locusts) and hypertrehalosaemic (in stick insects) activity can be isolated from the medium by RP-HPLC. Fractionation of a methanolic extract of corpora cardiaca from S.sipylus by RP-HPLC shows that active compounds are confined to apparently three absorbance peaks. The material of the highest absorbance peak was purified to homogeneity by RP-HPLC, and its amino acid composition determined after acid hydrolysis with HCl and with methanesulfonic acid revealed the residues Asx, Thr(3), Glx, Pro, Gly, Leu, Phe and Trp. The primary structure of this hypertrehalosaemic factor is assigned as a blocked decapeptide, pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2, from its FAB spectrum and metastable scans of its FAB spectrum. The structure is confirmed by synthesis; the synthetic and natural peptide co-chromatograph, and the synthetic peptide elevates blood carbohydrates in ligated stick insects and activates fat body phosphorylase in non-ligated S.sipylus.  相似文献   

18.
A 750 base pair segment of DNA from the tsetse fly Glossina morsitans morsitans was isolated by means of molecular cloning. It was shown by DNA hybridization to have substantial sequence homology with a defined region of the mitochondrial genomes of several Drosophila species. When used as a probe against DNA prepared from single tsetse flies, the cloned sequence revealed local restriction site variation between members of the G. morsitans subspecies complex. This feature was used to demonstrate maternal inheritance of the sequence in progeny of hybrid crosses and to assemble comparative restriction maps for a 3-kilobase segment of each mitochondrial genome. The data obtained from these exercises point to a higher genetic identity between G. m. morsitans and G. m. centralis than between either form and G. m. submorsitans.  相似文献   

19.
Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase-dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.  相似文献   

20.
Salivary glands of tsetse flies (Diptera: Glossinidiae) contain molecules that are involved in preventing blood clotting during feeding as well as molecules thought to be intimately associated with trypanosome development and maturation. Here we present a protein microchemical analysis of the major soluble proteins of the salivary glands of Glossina morsitans morsitans, an important vector of African trypanosomes. Differential solubilization of salivary proteins was followed by reverse-phase, high-performance liquid chromatography (HPLC) and analysis of fractions by 1-D gel electrophoresis to reveal four major proteins. Each protein was subjected to amino acid microanalysis and N-terminal microsequencing. A protein chemical approach using high-resolution 2-D gel electrophoresis and mass spectrometry was also used to identify the salivary proteins. Matrix-assisted, laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and quadrupole time-of-flight (Q-TOF) tandem mass spectrometry methods were used for peptide mass mapping and sequencing, respectively. Sequence information and peptide mass maps queried against the NCBI non-redundant database confirmed the identity of the first protein as tsetse salivary gland growth factor-1 (TSGF-1). Two proteins with no known function were identified as tsetse salivary gland protein 1 (Tsal 1) and tsetse salivary gland protein 2 (Tsal 2). The fourth protein was identified as Tsetse antigen-5 (TAg-5), which is a member of a large family of anti-haemostatic proteins. The results show that these four proteins are the most abundant soluble gene products present in salivary glands of teneral G. m. morsitans. We discuss the possible functions of these major proteins in cyclical transmission of African trypanosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号