首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
In the fly's visual system, the morphology of cells and the number of synapses change during the day. In the present study we show that in the first optic neuropil (lamina) of Drosophila melanogaster, a presynaptic active zone protein Bruchpilot (BRP) exhibits a circadian rhythm in abundance. In day/night (or light/dark, LD) conditions the level of BRP increases two times, in the morning and in the evening. The same pattern of changes in the BRP level was detected in whole brain homogenates, thus indicating that the majority of synapses in the brain peaks twice during the day. However, these two peaks in BRP abundance, measured as the fluorescence intensity of immunolabeling, seem to be regulated differently. The peak in the morning is predominantly regulated by light and involves the transduction pathway in the retina photoreceptors. This peak is present neither in wild‐type Canton‐S flies in constant darkness (DD), nor in norpA7 phototransduction mutant in LD. However, it also depends on the clock gene per, because it is abolished in the per0 arrhythmic mutant. In turn, the peak of BRP in the evening is endogenously regulated by an input from the pacemaker located in the brain. This peak is present in Canton‐S flies in DD, as well as in the norpA7 mutant in LD, but is absent in per01, tim,01 and cry01 mutants in LD. In addition both peaks seem to depend on clock gene‐expressing photoreceptors and glial cells of the visual system. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

3.
Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons.  相似文献   

4.
Photoperiodic regulation of the circadian rhythms in insect locomotor activity has been studied in several species, but seasonal entrainment of these rhythms is still poorly understood. We have traced the entrainment of activity rhythm of northern Drosophila montana flies in a climate chamber mimicking the photoperiods and day and night temperatures that the flies encounter in northern Finland during the summer. The experiment was started by transferring freshly emerged females into the chamber in early and late summer conditions to obtain both non-diapausing and diapausing females for the studies. The locomotor activity of the females and daily changes in the expression levels of two core circadian clock genes, timeless and period, in their heads were measured at different times of summer. The study revealed several features in fly rhythmicity that are likely to help the flies to cope with high variation in the day length and temperature typical to northern summers. First, both the non-diapausing and the diapausing females showed evening activity, which decreased towards the short day length as observed in the autumn in nature. Second, timeless and period genes showed concordant daily oscillations and seasonal shifts in their expression level in both types of females. Contrary to Drosophila melanogaster, oscillation profiles of these genes were similar to each other in all conditions, including the extremely long days in early summer and the cool temperatures in late summer, and their peak expression levels were not locked to lights-off transition in any photoperiod. Third, the diapausing females were less active than the non-diapausing ones, in spite of their younger age. Overall, the study showed that D. montana clock functions well under long day conditions, and that both the photoperiod and the daily temperature cycles are important zeitgebers for seasonal changes in the circadian rhythm of this species.  相似文献   

5.
6.
ObjectiveLiver fibrosis is part of the non-alcoholic fatty liver disease (NAFLD) spectrum, which currently has no approved pharmacological treatment. In this study, we investigated whether supplementation of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) precursor, can reduce the development of liver fibrosis in a diet-induced mouse model of liver fibrosis.MethodsMale C57BL/6 J mice were fed a low-fat control (LF), a high-fat/high-sucrose/high-cholesterol control (HF) or a HF diet supplemented with NR at 400 mg/kg/day (HF-NR) for 20 weeks. Features of liver fibrosis were assessed by histological and biochemical analyses. Whole-body energy metabolism was also assessed using indirect calorimetry. Primary mouse and human hepatic stellate cells were used to determine the anti-fibrogenic effects of NR in vitro.ResultsNR supplementation significantly reduced body weight of mice only 7 weeks after mice were on the supplementation, but did not attenuate serum alanine aminotransferase levels, liver steatosis, or liver inflammation. However, NR markedly reduced collagen accumulation in the liver. RNA-Seq analysis suggested that the expression of genes involved in NAD+ metabolism is altered in activated hepatic stellate cells (HSCs) compared to quiescent HSCs. NR inhibited the activation of HSCs in primary mouse and human HSCs. Indirect calorimetry showed that NR increased energy expenditure, likely by upregulation of β-oxidation in skeletal muscle and brown adipose tissue.ConclusionNR attenuated HSC activation, leading to reduced liver fibrosis in a diet-induced mouse model of liver fibrosis. The data suggest that NR may be developed as a potential preventative for human liver fibrosis.  相似文献   

7.
8.
Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1  week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.  相似文献   

9.
Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by 18O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of 18O2 and 16O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of carboxylation and oxygenation exchanges illustrated by a “mirror effect”. It explains the protective sink effect of photorespiration, e.g. during water stress. The importance of the CO2 compensation point, in classical models, is reduced at the benefit of the crossing points Cx and Ox, concentration values where carboxylation and oxygenation are equal or where the gross O2 uptake is half of the gross O2 evolution. This concept is useful to illustrate the feedback effects of photorespiration in the atmosphere regulation. The constancy of Sp and of Cx for a great variation of P under several irradiance levels shows that the regulation of the conductance maintains constant the internal CO2 and the ratio of photorespiration to photosynthesis (PR/P). The maintenance of the ratio PR/P, in conditions of which PR could be reduced and the carboxylation increased, reinforces the hypothesis of a positive role of photorespiration and its involvement in the plant-atmosphere co-evolution.  相似文献   

10.
Chen H  Wang Y  Bai C  Wang X 《Journal of Proteomics》2012,75(10):2835-2843
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of mortally and morbidity, associated with acute exacerbations (AECOPD) resulted from smoking, infection or air pollution. Systemic inflammation has been considered as one of major pathophysiologic alterations in AECOPD. The present study aimed at developing disease-specific biomarker evaluation by integrating proteomic profiles of inflammatory mediators in AECOPD with clinical and biological informatics. Plasma samples from 18 subjects including healthy people or patients with stable COPD or AECOPD were collected to measure 507 inflammatory mediators using antibody microarray. Clinical informatics was achieved by a Digital Evaluation Score System (DESS) for assessing severity of patients. 20 mediators were significantly different between 3 groups (p<0.05), of which, Cerberus 1, Growth Hormone R, IL-1F6, IL-17B R, IL-17D, IL-19, Lymphotoxin beta, MMP-10, Thrombopoietin and TLR4 were correlated with DESS scores (p<0.05). There was a down-regulation of systemic inflammatory responses in AECOPD. The integration of proteomic profile with clinical informatics as part of clinical bioinformatics is important to screen disease-specific and disease-staged biomarkers. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

11.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号