首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Current biology : CB》2019,29(10):1660-1668.e4
Download : Download video (28MB)  相似文献   

3.
《Current biology : CB》2022,32(2):338-349.e5
  1. Download : Download high-res image (187KB)
  2. Download : Download full-size image
  相似文献   

4.
Many animals rely on a sun compass for spatial orientation and long-range navigation. In addition to the Sun, insects also exploit the polarization pattern and chromatic gradient of the sky for estimating navigational directions. Analysis of polarization-vision pathways in locusts and crickets has shed first light on brain areas involved in sky compass orientation. Detection of sky polarization relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Brain areas involved in polarization processing include parts of the lamina, medulla and lobula of the optic lobe and, in the central brain, the anterior optic tubercle, the lateral accessory lobe and the central complex. In the optic lobe, polarization sensitivity and contrast are enhanced through convergence and opponency. In the anterior optic tubercle, polarized-light signals are integrated with information on the chromatic contrast of the sky. Tubercle neurons combine responses to the UV/green contrast and e-vector orientation of the sky and compensate for diurnal changes of the celestial polarization pattern associated with changes in solar elevation. In the central complex, a topographic representation of e-vector tunings underlies the columnar organization and suggests that this brain area serves as an internal compass coding for spatial directions.  相似文献   

5.
6.
7.
8.
9.
Polarized light (PL) sensitivity is relatively well studied in a large number of invertebrates and some fish species, but in most other vertebrate classes, including birds, the behavioural and physiological mechanism of PL sensitivity remains one of the big mysteries in sensory biology. Many organisms use the skylight polarization pattern as part of a sun compass for orientation, navigation and in spatial orientation tasks. In birds, the available evidence for an involvement of the skylight polarization pattern in sun-compass orientation is very weak. Instead, cue-conflict and cue-calibration experiments have shown that the skylight polarization pattern near the horizon at sunrise and sunset provides birds with a seasonally and latitudinally independent compass calibration reference. Despite convincing evidence that birds use PL cues for orientation, direct experimental evidence for PL sensitivity is still lacking. Avian double cones have been proposed as putative PL receptors, but detailed anatomical and physiological evidence will be needed to conclusively describe the avian PL receptor. Intriguing parallels between the functional and physiological properties of PL reception and light-dependent magnetoreception could point to a common receptor system.  相似文献   

10.
11.
Zusammenfassung V?gel stellen den Bezug zum Ziel indirekt über ein externes Referenzsystem her. Der Navigationsproze? besteht deshalb aus zwei Schritten: zun?chst wird die Richtung zum Ziel als Kompa?kurs festgelegt, dann wird dieser Kurs mit Hilfe eines Kompa?mechanismus aufgesucht. Das Magnetfeld der Erde und Himmelsfaktoren werden von den V?gel als Kompa? benutzt. In der vorliegenden Arbeit werden der Magnetkompa?, der Sonnenkompa? und der Sternkompa? der V?gel in ihrer Funktionsweise, ihrer Entstehung und ihrer biologischen Bedeutung vorgestellt. Der Magnetkompa? erwies sich als Inklinationskompa?, der nicht auf der Polarit?t, sondern auf der Neigung der Feldlinien im Raum beruht; er unterscheidet „polw?rts“ und „?quatorw?rts“ statt Nord und Süd. Er ist ein angeborener Mechanismus und wird beim Vogelzug und beim Heimfinden benutzt. Seine eigentliche Bedeutung liegt jedoch darin, da? er ein Referenzsystem bereitstellt, mit dessen Hilfe andere Orientierungsfaktoren zueinander in Beziehung gesetzt werden k?nnen. Der Sonnenkompa? beruht auf Erfahrung; Sonnenazimut, Tageszeit und Richtung werden durch Lernprozesse miteinander verknüpft, wobei der Magnetkompa? als Richtungsreferenzsystem dient. Sobald er verfügbar ist, wird der Sonnenkompa? bei der Orientierung im Heimbereich und beim Heimfinden bevorzugt benutzt; beim Vogelzug spielt er, wahrscheinlich wegen seiner Abh?ngigkeit von der geographischen Breite, kaum eine Rolle. Der Sternkompa? arbeitet ohne Beteiligung der Inneren Uhr; die V?gel leiten Richtungen aus den Konfigurationen der Sterne zueinander ab. Lernprozesse erstellen den Sternkompa? in der Phase vor dem ersten Zug; dabei fungiert die Himmelsrotation als Referenzsystem. Sp?ter, w?hrend des Zuges, übernimmt der Magnetkompa? diese Rolle. Die relative Bedeutung der verschiedenen Kompa?systeme wurde in Versuchen untersucht, bei denen Magnetfeld und Himmelsfaktoren einander widersprechende Richtungs-information gaben. Die erste Reaktion der V?gel war von Art zu Art verschieden; langfristig scheinen sich die V?gel jedoch nach dem Magnetkompa? zu richten. Dabei werden die Himmelsfaktoren umgeeicht, so da? magnetische Information und Himmelsinformation wieder im Einklang stehen. Der Magnetkompa? und die Himmelsfaktoren erg?nzen einander: der Magnetkompa? ersetzt Sonnen- und Sternkompa? bei bedecktem Himmel; die Himmelsfaktoren erleichtern den V?geln das Richtungseinhalten, zu dem der Magnetkompa? offenbar wenig geeignet ist. Magnetfeld und Himmelsfaktoren sollten deshalb als integrierte Komponenten eines multifaktoriellen Systems zur Richtungsorientierung betrachtet werden.
The orientation system of birds — I. Compass mechanisms
Summary Because of the large distances involved, birds establish contact with their goal indirectly via an external reference. Hence any navigation is a two-step process: in the first step, the direction to the goal is determined as a compass course; in the second step, this course is located with a compass. The geomagnetic field and celestial cues provide birds with compass information. The magnetic compass of birds, the sun compass the star compass and the interactions between the compass mechanisms are described in the present paper. Magnetic compass orientation was first demonstrated by testing night-migrating birds in experimentally altered magnetic fields: the birds changed their directional tendencies according to the deflected North direction. The avian magnetic compass proved to be an inclination compass: it does not use polarity; instead it is based on the axial course of the field lines and their inclination in space, distinguishing “poleward” and “equatorward” rather than North and South. Its functional range is limited to intensities around the local field strength, but this biological window is flexible and can be adjusted to other intensities. The magnetic compass is an innate mechanism that is widely used in bird migration and in homing. Its most important role, however, is that of a basic reference system for calibrating other kinds of orientation cues. Sun compass orientation is demonstrated by clock-shift experiments: Shifting the birds' internal clock causes them to misjudge the position of the sun, thus leading to typical deflections which indicate sun compass use. The analysis of the avian sun compass revealed that it is based only on sun azimuth and the internal clock; the sun's altitude is not involved. The role of the pattern of polarized light associated with the sun is unclear; only at sunset has it been shown to be an important cue for nocturnal migrants, being part of the sun compass. The sun compass is based on experience; sun azimuth, time of day and direction are combined by learning processes during a sensitive period, with the magnetic compass serving as directional reference. When established, the sun compass becomes the preferred compass mechanism for orientation tasks within the home region and homing: in migration, however, its role is minimal, probably because of the changes of the sun's arc with geographic latitude. The star compass was demonstrated in night-migrating birds by projecting the northern stars in different directions in a planetarium. The analysis of the mechanism revealed that the internal clock is not involved; birds derive directions from the spatial relationship of the star configurations. The star compass is also established by experience; the directional reference is first provided by celestial rotation, later, during migration, by the magnetic compass. The relative importance of the various compass mechanisms has been tested in experiments in which celestial and magnetic cues gave conflicting information. The first response of birds to conflicting cues differs considerably between species; after repeated exposures, however, the birds oriented according to magnetic North, indicating a long-term dominance of the magnetic compass. Later tests in the absence of magnetic information showed that celestial cues were not simply ignored, but recalibrated so that they were again in agreement with magnetic cues. The magnetic compass and celestial cues complement each other: the magnetic field ensures orientation under overcast sky; celestial cues facilitate maintaining directions, for which the magnetic compass appears to be ill suited. In view of this, the magnetic field and celestial cues should be regarded as integrated components of a multifactorial system for directional orientation.
  相似文献   

12.
《Current biology : CB》2022,32(13):2871-2883.e4
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

13.

Microscopical cuticular structures of four amphipods, presumed to be sensory in function are described, using a scanning electron microscope. Gammarus sp, Liljeborgia sp and Orchomene sp showed very small peg‐like microtrichs emerging from cuticular pits of less than one micron in diameter. Single units, facing distally, were ranged in rows, several rows occupying a single integumental polygon. Density of rows and number of units per row were always higher in central areas. The distribution, organization and relationships with larger sensilla, suggest that microtrichs are specialized in detection of slow or weak water currents. Orchestia showed short sensilla coeloconica. The difference between this species and the other three may be related to its different habitat, which is terrestrial.  相似文献   

14.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

15.
16.
《Current biology : CB》2021,31(17):3935-3942.e3
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   

17.
We report evidence for magnetic compass orientation by larval Drosophila melanogaster. Groups of larvae were exposed from the time of hatching to directional ultraviolet (365 nm) light emanating from one of four magnetic directions. Larvae were then tested individually on a circular agar plate under diffuse light in one of four magnetic field alignments. The larvae exhibited magnetic compass orientation in a direction opposite that of the light source in training. Evidence for a well-developed magnetic compass in a larval insect that moves over distances of at most a few tens of centimeters has important implications for understanding the adaptive significance of orientation mechanisms like the magnetic compass. Moreover, the development of an assay for studying magnetic compass orientation in larval D. melanogaster will make it possible to use a wide range of molecular genetic techniques to investigate the neurophysiological, biophysical, and molecular mechanisms underlying the magnetic compass.  相似文献   

18.
Neural mechanisms in insect navigation: polarization compass and odometer   总被引:5,自引:0,他引:5  
Insect navigation relies on path integration, a procedure by which information about compass bearings pursued and distances travelled are combined to calculate position. Three neural levels of the polarization compass, which uses the polarization of skylight as a reference, have been analyzed in orthopteran insects. A group of dorsally directed, highly specialized ommatidia serve as polarization sensors. Polarization-opponent neurons in the optic lobe condition the polarization signal by removing unreliable and irrelevant components of the celestial stimulus. Neurons found in the central complex of the brain possibly represent elements of the compass output. The odometer for measuring travelling distances in honeybees relies on optic flow experienced during flight, whereas desert ants most probably use proprioreceptive cues.  相似文献   

19.
《Current biology : CB》2020,30(13):2532-2550.e8
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号