共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chunzhang Cao Juanjuan Zhao Emily K. Doughty Mary Migliorini Dudley K. Strickland Maricel G. Kann Li Zhang 《The Journal of biological chemistry》2015,290(35):21642-21651
Mac-1 exhibits a unique inhibitory activity toward IL-13-induced JAK/STAT activation and thereby regulates macrophage to foam cell transformation. However, the underlying molecular mechanism is unknown. In this study, we report the identification of IL-13Rα1, a component of the IL-13 receptor (IL-13R), as a novel ligand of integrin Mac-1, using a co-evolution-based algorithm. Biochemical analyses demonstrated that recombinant IL-13Rα1 binds Mac-1 in a purified system and supports Mac-1-mediated cell adhesion. Co-immunoprecipitation experiments revealed that endogenous Mac-1 forms a complex with IL-13Rα1 in solution, and confocal fluorescence microscopy demonstrated that these two receptors co-localize with each other on the surface of macrophages. Moreover, we found that genetic inactivation of Mac-1 promotes IL-13-induced JAK/STAT activation in macrophages, resulting in enhanced polarization along the alternative activation pathway. Importantly, we observed that Mac-1−/− macrophages exhibit increased expression of foam cell differentiation markers including 15-lipoxygenase and lectin-type oxidized LDL receptor-1 both in vitro and in vivo. Indeed, we found that Mac-1−/−LDLR−/− mice develop significantly more foam cells than control LDLR−/− mice, using an in vivo model of foam cell formation. Together, our data establish for the first time a molecular mechanism by which Mac-1 regulates the signaling activity of IL-13 in macrophages. This newly identified IL-13Rα1/Mac-1-dependent pathway may offer novel targets for therapeutic intervention in the future. 相似文献
3.
Chiung-Hui Liu Rey-Heng Hu Miao-Juei Huang I-Rue Lai Chia-Hua Chen Hong-Shiee Lai Yao-Ming Wu Min-Chuan Huang 《PloS one》2014,9(8)
Cancer cell invasion and metastasis are the primary causes of treatment failure and death in hepatocellular carcinoma (HCC). We previously reported that core 1 β1,3-galactosyltransferase (C1GALT1) is frequently overexpressed in HCC tumors and its expression is associated with advanced tumor stage, metastasis, and poor survival. However, the underlying mechanisms of C1GALT1 in HCC malignancy remain unclear. In this study, we found that overexpression of C1GALT1 enhanced HCC cell adhesion to extracellular matrix (ECM) proteins, migration, and invasion, whereas RNAi-mediated knockdown of C1GALT1 suppressed these phenotypes. The promoting effect of C1GALT1 on the metastasis of HCC cells was demonstrated in a mouse xenograft model. Mechanistic investigations showed that the C1GALT1-enhanced phenotypic changes in HCC cells were significantly suppressed by anti-integrin β1 blocking antibody. Moreover, C1GALT1 was able to modify O-glycans on integrin β1 and regulate integrin β1 activity as well as its downstream signaling. These results suggest that C1GALT1 could enhance HCC invasiveness through integrin β1 and provide novel insights into the roles of O-glycosylation in HCC metastasis. 相似文献
4.
5.
6.
The protozoan Toxoplasma gondii actively modulates cytokine-induced JAK/STAT signaling pathways to facilitate survival within the host, including blocking IFNγ-mediated STAT1-dependent proinflammatory gene expression. We sought to further characterize inhibition of STAT1 signaling in infected murine dendritic cells (DC) because this cell type has not previously been examined, yet is known to serve as an early target of in vivo infection. Unexpectedly, we discovered that T. gondii infection alone induced sustained STAT1 phosphorylation and nuclear translocation in DC in a parasite strain-independent manner. Maintenance of STAT1 phosphorylation required active invasion but intracellular parasite replication was dispensable. The parasite rhoptry protein ROP16, recently shown to mediate STAT3 and STAT6 phosphorylation, was not required for STAT1 phosphorylation. In combination with IFNγ, T. gondii induced synergistic STAT1 phosphorylation and binding of aberrant STAT1-containing complexes to IFNγ consensus sequence oligonucleotides. Despite these findings, parasite infection blocked STAT1 binding to the native promoters of the IFNγ-inducible genes Irf-1 and Lrg47, along with subsequent gene expression. These results reinforce the importance of parasite-mediated blockade of IFNγ responses in dendritic cells, while simultaneously showing that T. gondii alone induces STAT1 phosphorylation. 相似文献
7.
RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling. 相似文献
8.
The activity of beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is elevated during aging and in sporadic Alzheimer’s disease (AD), but the underlying mechanisms of this change are not well understood. p25/Cyclin-dependent kinase 5 (Cdk5) has been implicated in the pathogenesis of several neurodegenerative diseases, including AD. Here, we describe a potential mechanism by which BACE activity is increased in AD brains. First, we show that BACE1 is phosphorylated by the p25/Cdk5 complex at Thr252 and that this phosphorylation increases BACE1 activity. Then, we demonstrate that the level of phospho-BACE1 is increased in the brains of AD patients and in mammalian cells and transgenic mice that overexpress p25. Furthermore, the fraction of p25 prepared from iodixanol gradient centrifugation was unexpectedly protected by protease digestion, suggesting that p25/Cdk5-mediated BACE1 phosphorylation may occur in the lumen. These results reveal a link between p25 and BACE1 in AD brains and suggest that upregulated Cdk5 activation by p25 accelerates AD pathogenesis by enhancing BACE1 activity via phosphorylation. 相似文献
9.
10.
Mengtao Ma Miao He Qian Jiang Yuanyuan Yan Shu Guan Jing Zhang Zhaojin Yu Qiuchen Chen Mingli Sun Weifan Yao Haishan Zhao Feng Jin Minjie Wei 《International journal of biological sciences》2016,12(4):397-408
Tumor metastasis is a complex and multistep process and its exact molecular mechanisms remain unclear. We attempted to find novel microRNAs (miRNAs) contributing to the migration and invasion of breast cancer cells. In this study, we found that the expression of miR-487a was higher in MDA-MB-231breast cancer cells with high metastasis ability than MCF-7 breast cancer cells with low metastasis ability and the treatment with transforming growth factor β1 (TGF-β1) significantly increased the expression of miR-487a in MCF-7 and MDA-MB-231 breast cancer cells. Subsequently, we found that the transfection of miR-487a inhibitor significantly decreased the expression of vimentin, a mesenchymal marker, while increased the expression of E-cadherin, an epithelial marker, in both MCF-7 cells and MDA-MB-231 cells. Also, the inactivation of miR-487a inhibited the migration and invasion of breast cancer cells. Furthermore, our findings demonstrated that miR-487a directly targeted the MAGI2 involved in the stability of PTEN. The down-regulation of miR-487a increased the expression of p-PTEN and PTEN, and reduced the expression of p-AKT in both cell lines. In addition, the results showed that NF-kappaB (p65) significantly increased the miR-487a promoter activity and expression, and TGF-β1 induced the increased miR-487a promoter activity via p65 in MCF-7 cells and MDA-MB-231 cells. Moreover, we further confirmed the expression of miR-487a was positively correlated with the lymph nodes metastasis and negatively correlated with the expression of MAGI2 in human breast cancer tissues. Overall, our results suggested that miR-487a could promote the TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2. 相似文献
11.
Waleed El-Beialy Nadia Galal Yoshiaki Deyama Yoshitaka Yoshimura Kuniaki Suzuki Kanchu Tei Yasunori Totsuka 《The Journal of membrane biology》2010,233(1-3):119-126
Modulation of the physiologically influential Na+,K+-ATPase is a complex process involving a wide variety of factors. To determine the possible effects of the protein tyrosine phosphatase (PTP) inhibitors dephostatin and Et-3,4-dephostatin on human and pig, renal cells and enzymatic extracts, we treated our samples (15 min–24 h) with those PTP inhibitors (0–100 μM). PTP inhibitors were found to possess a concentration-dependent inhibition of Na+,K+-ATPase activity in both human and pig samples. The inhibition was similarly demonstrated on all cellular, microsomal fraction and purified Na+,K+-ATPase levels. Despite rigorous activity recovery attempts, the PTP inhibitors’ effects were sustained on Na+,K+-ATPase activity. Western blotting experiments revealed the expression of both α1- and β1-subunits in both human and pig tissues. α1-Subunits possessed higher tyrosine phosphorylation levels with higher concentrations of PTP inhibitors. Meanwhile, serine/threonine residues of both α1- and β1-subunits demonstrated diminished phosphorylation levels upon dephostatin treatment. Accordingly, we provide evidence that Na+,K+-ATPase can be regulated through tyrosine phosphorylation of primarily their α1-subunits, using PTP inhibitors. 相似文献
12.
13.
Elie Simard Jeffrey J. Kovacs William E. Miller Jihee Kim Michel Grandbois Robert J. Lefkowitz 《PloS one》2013,8(11)
Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility. 相似文献
14.
15.
16.
Neurochemical Research - Parkinson’s disease (PD) is a severe neurodegenerative disease characterized by selective loss of dopaminergic neurons, which reduces quality of life of patients and... 相似文献
17.
Lili Jiang Libing Song Jueheng Wu Yi Yang Xun Zhu Bo Hu Shi-Yuan Cheng Mengfeng Li 《PloS one》2013,8(1)
Angiogenesis in glioma is associated with the poor prognosis of the disease and closely correlates with the highly invasive phenotype of glioma cells, which represents the most challenging impediment against the currently glioma treatments. Bmi-1, an onco-protein, has been implicated in the progression of various human cancers, including gliomas, whereas its role in glioma angiogenesis remains unclear. Our current study examined the effects of Bmi-1 on glioma angiogenesis in vitro as well as in vivo. We found that overexpression of Bmi-1 enhanced, whereas knockdown of Bmi-1 diminished, the capability of glioma cells to induce tubule formation and migration of endothelial cells and neovascularization in chicken chorioallantoic membrane. In vivo, Bmi-1 overexpression and knockdown, respectively, promoted and inhibited angiogenesis in orthotopically transplanted human gliomas. Furthermore, NF-κB activity and VEGF-C expression was induced by Bmi-1 overexpression, whereas Bmi-1 knockdown attenuated NF-κB signaling and decreased VEGF-C expression. Additionally suppression of NF-κB activity using a specific chemical inhibitor abrogated the NF-κB activation and the pro-angiogenic activities of glioma cells. Together, our data suggest that Bmi-1 plays an important role in glioma angiogenesis and therefore could represent a potential target for anti-angiogenic therapy against the disease. 相似文献
18.
Dongwei Jia Fangfang Duan Peike Peng Linlin Sun Xiaojuan Liu Lan Wang Weicheng Wu Yuanyuan Ruan Jianxin Gu 《PloS one》2013,8(3)
Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injury, and activation of quiescent hepatic stellate cells (HSCs) into a myofibroblast-like phenotype is considered as the central event of liver fibrosis. RACK1, the receptor for activated C-kinase 1, is a classical scaffold protein implicated in numerous signaling pathways and cellular processes; however, the role of RACK1 in liver fibrosis is little defined. Herein, we report that RACK1 is up-regulated in activated HSCs in transforming growth factor beta 1 (TGF-β1)-dependent manner both in vitro and in vivo, and TGF-β1 stimulates the expression of RACK1 through NF-κB signaling. Moreover, RACK1 promotes TGF-β1 and platelet-derived growth factor (PDGF)-mediated activation of pro-fibrogenic pathways as well as the differentiation, proliferation and migration of HSCs. Depletion of RACK1 suppresses the progression of TAA-induced liver fibrosis in vivo. In addition, the expression of RACK1 in fibrogenic cells also positively correlates well with the stage of liver fibrosis in clinical cases. Our results suggest RACK1 as a downstream target gene of TGF-β1 involved in the modulation of liver fibrosis progression in vitro and in vivo, and propose a strategy to target RACK1 for liver fibrosis treatment. 相似文献
19.
20.
Valérie Poirier Horacio Bach Yossef Av-Gay 《The Journal of biological chemistry》2014,289(42):29376-29385
Mycobacterium tuberculosis tyrosine phosphatase PtpA inhibits two key cellular events in macrophages required for the elimination of invading organisms, phagosome acidification, and maturation. Kinome analysis revealed multiple PtpA-dependent changes to the phosphorylation status of macrophage proteins upon M. tuberculosis infection. Among those proteins we show that PtpA dephosphorylates GSK3α on amino acid Tyr279, which leads to modulation of GSK3α anti-apoptotic activity, promoting pathogen survival early during infection. 相似文献