首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
益生菌Escherichia coli Nissle1917功能研究进展   总被引:1,自引:0,他引:1  
潘秋莎  苏式兵  赵明 《微生物学通报》2019,46(11):3133-3139
大肠埃希菌Nissle1917,简称EcN,是益生菌中为数不多的革兰氏阴性菌,在临床上主要用于克罗恩病、溃疡性结肠炎等胃肠功能障碍。其机制在于EcN能在人体肠道定殖,并阻止病原菌对肠道黏膜的侵袭,对肠道黏膜屏障具有保护和修护作用。EcN还参与机体的免疫调控,平衡免疫因子的分泌,增强宿主免疫能力,进而缓解和治疗炎症。最进研究发现,EcN具有肿瘤靶向作用,是良好的药物载体,且与化疗药物联用可增强药物抗肿瘤的疗效,为抗肿瘤治疗提供了新的思路。  相似文献   

2.
Aims:  This study was prompted to investigate the intestinal localization and colonization of orally administered Escherichia coli Nissle 1917 (EcN) in piglets.
Methods and Results:  EcN was fed to ten EcN-negative piglets (3 months) over seven consecutive days. Faecal samples were collected repeatedly and tested for EcN-DNA by a combined culture/PCR assay and for viable EcN by culture methods, respectively. EcN-DNA was detectable in faeces of all piglets within the first 24 h after it was added to the feed. After the administration of EcN had been stopped, the presence of EcN-DNA in faecal samples indicated that all piglets shedded EcN with their faeces intermittently through up to 33 days. In addition, E. coli strains indistinguishable from EcN by all markers tested (rdar colony morphotype, multiplex PCR and GEI II-PCR analyses, Xba I-pattern, K5 phage susceptibility) were isolated from faecal samples and from mucosal swabs taken at euthanasia at the end of the experiment.
Conclusions:  EcN colonizes the intestine and persists in conventionally reared piglets for at least 4 weeks upon oral administration.
Significance and Impact of the Study:  Results of this study have implications for efficacy and safety assessments of EcN as a probiotic strain for use in pigs.  相似文献   

3.
Bacterial vectors, as microscopic living ‘robotic factories’, can be reprogrammed into microscopic living ‘robotic factories’, using a top-down bioengineering approach to produce and deliver anticancer agents. Most of the current research has focused on bacterial species such as Salmonella typhimurium or Clostridium novyi. However, Escherichia coli Nissle 1917 (EcN) is another promising candidate with probiotic properties. EcN offers increased applicability for cancer treatment with the development of new molecular biology and complete genome sequencing techniques. In this review, we discuss the genetics and physical properties of EcN. We also summarize and analyse recent studies regarding tumour therapy mediated by EcN. Many challenges remain in the development of more promising strategies for combatting cancer with EcN.  相似文献   

4.
Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria and have a relevant role in bacteria–host interactions. Using 1D SDS–PAGE and highly sensitive LC–MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain‐linked genes and 57 were common to pathogen‐derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic‐derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 ( http://proteomecentral.proteomexchange.org/dataset/PXD000367 ).  相似文献   

5.
Nonpathogenic Escherichia coli strain Nissle 1917 (O6:K5:H1) is used as a probiotic agent in medicine, mainly for the treatment of various gastroenterological diseases. To gain insight on the genetic level into its properties of colonization and commensalism, this strain's genome structure has been analyzed by three approaches: (i) sequence context screening of tRNA genes as a potential indication of chromosomal integration of horizontally acquired DNA, (ii) sequence analysis of 280 kb of genomic islands (GEIs) coding for important fitness factors, and (iii) comparison of Nissle 1917 genome content with that of other E. coli strains by DNA-DNA hybridization. PCR-based screening of 324 nonpathogenic and pathogenic E. coli isolates of different origins revealed that some chromosomal regions are frequently detectable in nonpathogenic E. coli and also among extraintestinal and intestinal pathogenic strains. Many known fitness factor determinants of strain Nissle 1917 are localized on four GEIs which have been partially sequenced and analyzed. Comparison of these data with the available knowledge of the genome structure of E. coli K-12 strain MG1655 and of uropathogenic E. coli O6 strains CFT073 and 536 revealed structural similarities on the genomic level, especially between the E. coli O6 strains. The lack of defined virulence factors (i.e., alpha-hemolysin, P-fimbrial adhesins, and the semirough lipopolysaccharide phenotype) combined with the expression of fitness factors such as microcins, different iron uptake systems, adhesins, and proteases, which may support its survival and successful colonization of the human gut, most likely contributes to the probiotic character of E. coli strain Nissle 1917.  相似文献   

6.
7.
AIMS: To verify the presence of Escherichia coli Nissle 1917 as a natural isolate in swine and to characterize in vitro probiotic properties as well as in vivo persistence in a feeding experiment. METHODS AND RESULTS: During studies on the intestinal microflora of pigs, we isolated E. coli Nissle 1917 sporadically from a pig population over a period of 1 year. The identity of the isolates as E. coli Nissle 1917 was verified by serotyping, Nissle-specific PCR, macrorestriction analysis (pulsed field gel electrophoresis) and the determination of in vitro probiotic properties in invasion and adhesion assays using a porcine intestinal epithelial cell line. Both the E. coli isolates and the E. coli Nissle 1917 strain showed strong reductions in adhesion of porcine enteropathogenic E. coli and invasion of Salmonella typhimurium with epithelial cells in vitro, with a probiotic effect. Screening of five epidemiologically unlinked swine farms and two wild boar groups showed one farm positive for E. coli Nissle 1917. A feeding experiment with four piglets showed viable E. coli Nissle 1917 in the intestine of three animals. CONCLUSIONS: The results of this study suggest that the E. coli Nissle 1917 strain is already partially established in swine herds, but the colonization of individual animals is variable. SIGNIFICANCE AND IMPACT OF THE STUDY: We report natural, long-term colonization and transmission of the probiotic E. coli Nissle 1917 strain in a swine herd, characterized individual persistence and colonization properties in swine and established an in vitro porcine intestinal epithelial cell model of probiotic action. The results of this study would have implications in the use of this strain as a probiotic in swine and contribute to a better understanding of the individual nature of intestinal bacterial persistence and establishment.  相似文献   

8.
9.
【目的】证实大肠杆菌Nissle 1917作为自然菌株存在于动物猪体内,并能从猪粪便中分离。建立大肠杆菌Nissle 1917的原位杂交鉴定方法。【方法】采集135份健康断奶仔猪的新鲜粪便制备DNA模板,以人源大肠杆菌Nissle 1917为阳性对照菌株,分别针对Nissle 1917的I型菌毛亚单位Fim A、F1C菌毛亚单位Foc A及两个质粒pMUT1和pMUT2的相关基因序列设计5对特异性引物进行PCR扩增;并将其中427 bp大小的质粒片段pMUT2(a)作为目的片段回收纯化,用地高辛随机引物标记法制成DNA探针。【结果】从其中的2份DNA模板中扩增出上述5对特异性引物PCR预期大小相符的片段,初步认为大肠杆菌Nissle 1917可能存在于猪体内。应用制备的探针通过菌落原位杂交的方法从2份阳性粪便样品中筛选出2株阳性菌落,通过血清学检验、PCR扩增和测序进一步鉴定为阳性Nissle 1917菌株。【结论】动物源益生菌Nissle 1917的分离鉴定,为优良动物源益生菌研究和应用奠定了基础。  相似文献   

10.
Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L−1 OD−1. The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD−1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3′-phosphoadenosine-5′-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.  相似文献   

11.
Probiotic microorganisms are defined as viable nutritional agents conferring benefit to the health of the human host. Especially, Escherichia coli strain Nissle 1917 (EcN) was shown to be equally effective as mesalazine in the maintenance of remission in ulcerative colitis (UC). Presumably, the therapeutic effect of EcN is linked to the presence of the strain in the region of interest; however, it remains difficult to follow the orally administered strain on its passage through the complex microbial environment of the intestine in vivo, inhabited dominantly by various E. coli strains, using traditional culturing methods. In this study we transformed EcN and a wild-type E. coli from a laboratory rat (EcR) with a plasmid carrying a gfp gene (pUC-gfp) to obtain EcN- and EcR-GFP to allow in vivo detection without alteration of strain-specific characteristics. Analysis of different strain-specific characteristics included the measurement of stimulation of IL-8 secretion and adhesion in vitro using the epithelial cell line HT-29. The kinetics of intestinal distribution in mice and colonization properties in rats following oral administration was studied in vivo. Detectability of the strain in histologic specimens was analysed using fluorescence microscopy and immunohistochemistry. The identity of fluorescent E. coli strains isolated from stool samples, Peyer's patches (PP) and mesenteric lymph nodes (MLN) was determined by REP-PCR. We were able to demonstrate that EcN and EcN-GFP do not differ in stimulation of IL-8 secretion or adhesion to HT-29 cells. In vivo, EcN-GFP colonies were readily detectable by fluorescence microscopy in luminal samples and also by immunohistochemistry in histological sections allowing analysis of the kinetics of the intestinal passage following oral administration. Translocation of fluorescent and non-fluorescent bacteria into PP and MLN was noted at 6 h post oral administration. EcN-GFP was detectable initially for 14 days in faecal samples of rats, while EcR-GFP was detectable throughout the whole experiment (45 days). Challenge with ampicillin at day 45 demonstrated continuing presence of EcN-GFP in small numbers by reappearing fluorescent colonies. The plasmid was not stable in vivo since non-fluorescent EcN colonies were detected also in faecal samples by REP-PCR. In summary, transformation of EcN to obtain EcN-GFP in our study had no detectable influence on the probiotic microorganism regarding adhesion on and induction of IL-8 secretion of HT-29 cells and allows the detection in mixed microbial environments in vivo but the stability of EcN-GFP in vivo is limited.  相似文献   

12.
13.
Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.  相似文献   

14.
15.
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.  相似文献   

16.
17.

Background

Probiotics are proposed to positively modulate the intestinal epithelial barrier formed by intestinal epithelial cells (IECs) and intercellular junctions. Disruption of this border alters paracellular permeability and is a key mechanism for the development of enteric infections and inflammatory bowel diseases (IBDs).

Methodology and Principal Findings

To study the in vivo effect of probiotic Escherichia coli Nissle 1917 (EcN) on the stabilization of the intestinal barrier under healthy conditions, germfree mice were colonized with EcN or K12 E. coli strain MG1655. IECs were isolated and analyzed for gene and protein expression of the tight junction molecules ZO-1 and ZO-2. Then, in order to analyze beneficial effects of EcN under inflammatory conditions, the probiotic was orally administered to BALB/c mice with acute dextran sodium sulfate (DSS) induced colitis. Colonization of gnotobiotic mice with EcN resulted in an up-regulation of ZO-1 in IECs at both mRNA and protein levels. EcN administration to DSS-treated mice reduced the loss of body weight and colon shortening. In addition, infiltration of the colon with leukocytes was ameliorated in EcN inoculated mice. Acute DSS colitis did not result in an anion secretory defect, but abrogated the sodium absorptive function of the mucosa. Additionally, intestinal barrier function was severely affected as evidenced by a strong increase in the mucosal uptake of Evans blue in vivo. Concomitant administration of EcN to DSS treated animals resulted in a significant protection against intestinal barrier dysfunction and IECs isolated from these mice exhibited a more pronounced expression of ZO-1.

Conclusion and Significance

This study convincingly demonstrates that probiotic EcN is able to mediate up-regulation of ZO-1 expression in murine IECs and confer protection from the DSS colitis-associated increase in mucosal permeability to luminal substances.  相似文献   

18.
Escherichia coli is a highly versatile species encompassing a diverse spectrum of strains, i.e. from highly virulent isolates causing serious infectious diseases to commensals and probiotic strains. Although much is known about bacterial pathogenicity in E. coli, the understanding of which genetic determinants differentiates a virulent from an avirulent strain still remains limited. In this study we designed a new comparative genomic hybridization microarray based on 31 sequenced E. coli strains and used it to compare two E. coli strains used as prophylactic agents (i.e. Nissle 1917 and 83972) with the highly virulent uropathogen CFT073. Only relatively minor genetic variations were found between the isolates, suggesting that the three strains may have originated from the same virulent ancestral parent. Interestingly, Nissle 1917 (a gut commensal strain) was more similar to CFT073 with respect to genotype and phenotype than 83972 (an asymptomatic bacteriuria strain). The study indicates that genetic variations (e.g. mutations) and expression differences, rather than genomic content per se, contribute to the divergence in disease-causing ability between these strains. This has implications for the use of virulence factors in epidemiological research, and emphasizes the need for more comparative genomic studies of closely related strains to compare their virulence potential.  相似文献   

19.
20.
Increased numbers of adherent invasive Escherichia coli (AIEC) have been found in Crohn's disease (CD) patients. In this report, we investigate the potential of the probiotic Escherichia coli Nissle 1917 (EcN) to reduce features associated with AIEC pathogenicity in an already established infection with AIEC reference strain LF82.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号