首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
《Current biology : CB》2019,29(14):2359-2370.e5
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

5.
The macronucleus of Tetrahymena contains a large number of DNA molecules of subchromosomal size. They belong to about 270 species each one occurring at an average number of 45 copies Macronuclei divide unequally and nothing is known of segregation control. This and the elimination and degradation of DNA during macronuclear amitosis make the clonal stability of macronuclei a problem of qualitative and quantitative control on a subchromosomal level. We studied the contribution of DNA elimination to the quantitative composition of the macronucleus cytophotometrically in single cells of different strains. This was done under standard conditions and under conditions known to influence the amount of macronuclear DNA. The following results were found: Elimination of DNA occurs at almost every division. The size of the elimination body is highly variable but still positively correlated with the macronuclear DNA content. In T. thermophila the amount of eliminated DNA is 2.5% of the G2 content and is not dependent on the growth state. It varies with species, amounting to as much as 8% in T pigmentosa. During conditions which increase the macronuclear DNA content, very little DNA is eliminate. On the other hand, large amounts are eliminated under other conditions causing the macronuclear DNA content to decrease. DNA to be eliminated at division is synthesized at the same time as bulk DNA. We developed a computer program which helps us study the effects of DNA elimination and unequal divisions upon the copy numbers of subchromosomal DNA classes. The result indicates that in a given cell line at least one of the DNA molecules becoms extinct after 60 generations which we expect would cause the cell's extinction and restrict a clone's life to 60 generations. As this does not happen in nature, there must be some control of the copy numbers preventing their extinction during vegetative multiplication. Whether elimination increases or decreases the imbalance of genes remains to be investigated. © 1992 Wiley-Liss, Inc.  相似文献   

6.
7.
Experimental data on mating type determination in T. thermophila, collected by Nanney, Allen, and their collaborators over a period of 25 years, are reinterpreted in the light of our current understanding of macronuclear genetics. A strong case is developed supporting the idea that mating type determination involves the developmental alteration of somatic DNA that occurs regularly in developing macronuclei in conjugating pairs. A. testable DNA deletion/splicing model is developed that although based on a few simple, plausible assumptions, explains the observations remarkably well. The model is in (at least) superficial analogy to the mechanism that must be involved to explain the somatic differentiation and alteration of DNA sequences that ultimately constitute an expressed vertebrate immunoglobulin gene. Because of the genetic, biochemical, and micromanipulative versatility of Tetrahymena, it may well turn out to be a uniquely suitable microbial eukaryotic experimental system for the study of developmental alterations of somatic DNA.  相似文献   

8.
随着表观遗传学的飞速发展,拉马克的获得性遗传理论又重新得到了学术界的关注.近年,哺乳动物获得性性状的跨代遗传现象也得到了较为深入的研究.在获得性性状的跨代遗传过程中,由环境压力导致的表观遗传信息经由生殖系在代际间传递.其中,在环境压力相关的表观遗传信息的建立及传递过程中,精子小非编码RNA(small non-coding RNA,sncRNAs)发挥关键作用,环境压力信息以sncRNAs的形式储存在成熟精子中,通过受精作用,精子sncRNAs参与胎儿原始生殖细胞基因组的表观遗传修饰,将表观遗传信息跨代传递,进而影响获得性性状相关的基因表达.本文主要综述了精子sncRNAs参与获得性性状跨代遗传的机制,为研究遗传性的代谢疾病、促进人类生殖健康及家畜良种繁育提供新思路.  相似文献   

9.
In Tetrahymena, the DNA of the macronucleus exists as very large (100 to 4,000-kb) linear molecules that are randomly partitioned to the daughter cells during cell division. This genetic system leads directly to an assortment of alleles such that all loci become homozygous during vegetative growth. Apparently, there is a copy number control mechanism operative that adjusts the number of each macronuclear DNA molecule so that macronuclear DNA molecules (with their loci) are not lost and aneuploid death is a rare event. In comparing Southern analyses of the DNA from various species of Tetrahymena using histone H4 genes as a probe, we find different band intensities in many species. These differences in band intensities primarily reflect differences in the copy number of macronuclear DNA molecules. The variation in copy number of macronuclear DNA molecules in some species is greater than an order of magnitude. These observations are consistent with a developmental control mechanism that operates by increasing the macronuclear copy number of specific DNA molecules (and the genes located on these molecules) to provide the relatively high gene copy number required for highly expressed proteins. © 1992 Wiley-Liss, Inc.  相似文献   

10.
The inositol isomer composition of phosphoinositides, polyphosphoinositols, phosphatidylinositol-linked glycans, and glycosyl phosphatidylinositol-anchored proteins of logarithmic phase Tetrahymena vorax was determined by GC-MS analysis of trimethylsilylimadazole derivatives. The most abundant inositol found was the myo-isomer; however, appreciable percentages of scylloinositol were present in the free inositol pool, phosphatidylinositol-linked glycan fraction, and glycosyl phosphatidylinositol-anchored protein fraction. Trace quantities of chiro- and neo-inositols also were present.  相似文献   

11.
《Developmental cell》2022,57(3):298-309.e9
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
  相似文献   

12.
《Current biology : CB》2019,29(17):2880-2891.e4
  1. Download : Download high-res image (177KB)
  2. Download : Download full-size image
  相似文献   

13.
14.
Many transposon-related sequences are removed from the somatic macronucleus of ciliates during sexual reproduction. In the ciliate Tetrahymena, an RNAi-related mechanism produces small noncoding RNAs that induce heterochromatin formation, which is followed by DNA elimination. Because RNAi-related mechanisms repress transposon activities in a variety of eukaryotes, the DNA elimination mechanism of ciliates might have evolved from these types of transposon-silencing mechanisms. Nuclear dimorphism allows ciliates to identify any DNA that has invaded the germ-line micronucleus using small RNAs and a whole genome comparison of the micronucleus and the somatic macronucleus.  相似文献   

15.
16.
Synopsis.
Unequal macronuclear division in Tetrahymena thermophila introduces variance into G1 macronuclei; unless eliminated such variance would result in continuous variation in DNA content. Analysis of G1 and G2 macronuclear variances reveals that the added variance is eliminated by action on the extremes of macronuclear DNA content. In this model (Model II), macronuclei with small amounts of DNA have an additional complete S phase, while those with large amounts of DNA skip S. From available data, chromatin extrusion is shown not to contribute significantly, if at all, to the elimination of variance. Computer simulations utilizing haploid subunits indicate that model II predictions apply reasonably well to experimental data in terms of coefficients of variation, mean DNA content, and frequency of additional and skipped S phases. The simulations reveal also that within certain constraints, particularly the thresholds for additional and skipped S phases, macronuclear assortment is unaffected by Model II regulation. The relationships between Model II and other aspects of the cell cycle are briefly discussed.  相似文献   

17.
Micronuclear changes of variety 1 of Tetrahymena pyriformis during meiotic prophase have been observed by the light microscope. Morphologic changes in the micronucleus are divided into 6 stages. In stage I, chromatin begins to polarize; in stage II, the micronucleus becomes spindle shaped; and in stage III, one end of the micronucleus protrudes to form a “neck.” In stage IV, where the micronucleus elongates to maximal length, the whole micronucleus consists of 2 chromatin threads pairing longitudinally. One thread probably contains one genome. In stage V, the elongated thread becomes shorter and thicker. Finally, in stage VI, separate chromosomes appear and enter into metaphase. To discover the role of the elongation of the micronucleus, called crescent formation, autoradiographic analysis of RNA and DNA synthesis were undertaken using [3H]uridine and [3H]thymidine. Pulse label and chase experiments show that the crescent in stages II and III is actively synthesizing RNA. Though no remarkable DNA synthesis was observed during meiosis, a small amount of DNA synthesis occurred during the 1st and 2nd prezygotic divisions.  相似文献   

18.
19.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron? strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron? alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron? rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis. © 1992 Wiley-Liss, Inc.  相似文献   

20.
SYNOPSIS. Synthesis of RNA in the macronucleus and appearance of RNA in the cytoplasm were studied in heat synchronized Tetrahymena pyriformis GL and compared to those found under conditions of logarithmic growth (28 C) and during heat shocks (34 C). In macronuclei of logarithmically growing cells precursors were processed to 2 rRNA species (25S and 17S). In addition, another RNA (15S), more homogeneous than the RNA (8-15S) in the cytoplasm, was observed in the macronucleus. Both 17S and 25S rRNA species were found in the cytoplasm, 17S rRNA appearing more rapidly than 25S rRNA. Synthesis of rRNA was suppressed at 34 C in cells subjected to heat synchronization; 8-15S RNA synthesis appeared to be inhibited to a lesser extent. During the time preceding the first synchronized division, the synthesis of rRNAs in the macronucleus slowly recovered. Early in the cycle, almost no newly synthesized rRNAs were extracted. By 30 min after the last heat shock (EH), most of the RNA synthesized was not identified as rRNA. By 60 min after EH, the pattern of RNA synthesis had not returned to that observed in logarithmically growing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号