首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PHB biosynthesis pathway, consisting of three open reading frames (ORFs) that encode for β-ketothiolase (phaA Cma , 1179 bp), acetoacetyl-CoA reductase (phaB Cma , 738 bp), and PHA synthase (phaC Cma , 1694 bp), of Caldimonas manganoxidans was identified. The functions of PhaA, PhaB, and PhaC were demonstrated by successfully reconstructing PHB biosynthesis pathway of C. manganoxidans in Escherichia coli, where PHB production was confirmed by OD600, gas chromatography, Nile blue stain, and transmission electron microscope (TEM). The protein sequence alignment of PHB synthases revealed that phaC Cma shares at least 60% identity with those of class I PHB synthase. The effects of PhaA, PhaB, and PhaC expression levels on PHB production were investigated. While the overexpression of PhaB is found to be important in recombinant E. coli, performances of PHB production can be quantified as follows: PHB concentration of 16.8 ± 0.6 g/L, yield of 0.28 g/g glucose, content of 74%, productivity of 0.28 g/L/h, and Mw of 1.41 MDa.  相似文献   

2.
The behaviour of Halomonas boliviensis during growth in fed-batch culture under different kind of nutrient restrictions was examined. The metabolic switch between growth and accumulation phase is determined by the limitation in one or more essential nutrient for bacterial growth. The aim of this study was to test the effect of applying limitations of a essential nutrient, such as nitrogen, and the influence of different O2 concentrations on poly(3-hydroxybutyrate) (PHB) production during the accumulation phase. Single limitations of nitrogen and oxygen provoke PHB accumulations of 45 and 37 % (g g?1), respectively, while N limitation with low O2 supply causes the highest PHB accumulation of 73 %. The characterization of the PHB production with the strain H. boliviensis would allow a better optimization of the process and enrich the knowledge about the PHB production from strains different than Cupriavidus necator.  相似文献   

3.
E. coli JM109?envC?nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109?minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109?envC?nlpD and E. coli JM109?minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109?minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109?envC?nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.  相似文献   

4.
A moderately halophilic bacterium, designated strain 9-2T, was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5–14 % (w/v) (optimum, 7–10 %, w/v), at temperatures of 10–45 °C (optimum 25–30 °C) and at pH 5.0–10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2T is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502T (96.68 %), Halomonas campaniensis DSM 1293T (96.46 %), Halomonas ventosae DSM 15911T (96.27 %) and Halomonas kenyensis DSM 17331T (96.27 %). The DNA–DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2T and H. desiderata DSM 9502T. The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2T is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2T (=DSM 26881T = CGMCC 1.12467T).  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics that are synthesized by diverse bacteria. In this study, the synthesis of PHAs by the model aromatic-degrading strain Burkholderia xenovorans LB400 was analyzed. Twelve pha genes including three copies of phaC and five copies of the phasin-coding phaP genes are distributed among the three LB400 replicons. The phaC1ABR gene cluster that encodes the enzymes of the PHA anabolic pathway is located at chromosome 1 of strain LB400. During the growth of strain LB400 on glucose under nitrogen limitation, the expression of the phaC1, phaA, phaP1, phaR, and phaZ genes was induced. Under nitrogen limitation, PHA accumulation in LB400 cells was observed by fluorescence microscopy after Nile Red staining. GC-MS analyses revealed that the PHA accumulated under nitrogen limitation was poly(3-hydroxybutyrate) (PHB). LB400 cells grown on glucose as the sole carbon source under nitrogen limitation accumulated 40?±?0.96% PHB of the cell dry weight, whereas no PHA was observed in cells grown in control medium. The functionality of the phaC1 gene from strain LB400 was further studied using heterologous expression in a Pseudomonas putida KT40C1ZC2 mutant strain derived from P. putida KT2440 that is unable to synthesize PHAs. Interestingly, KT40C1ZC2[pVNC1] cells that express the phaC1 gene from strain LB400 were able to synthesize PHB (33.5% dry weight). This study indicates that B. xenovorans LB400 possesses a functional PHA synthetic pathway that is encoded by the pha genes and is capable of synthesizing PHB.  相似文献   

6.
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.  相似文献   

7.
Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.  相似文献   

8.
Single-cell biorefineries are an interesting strategy for using different components of feedstock to produce multiple high-value biochemicals. In this study, a strategy was applied to refine glucose and fatty acid to produce 5-aminolevulinic acid (ALA) and polyhydroxyalkanoates (PHAs). To express the ALA and PHAs dual-production system efficiently and stably, multiple copies of the poly-β-3-hydroxybutyrate (PHB) synthesis operon were integrated into the chromosome of Escherichia coli DH5αΔpoxB. The above strain harboring the ALA C5 synthesis pathway genes hemA and hemL resulted in coproduction of 38.2% PHB (cell dry weight, CDW) and 3.2 g/L extracellular ALA. To explore coproduction of ALA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the PHBV synthetic pathway was also integrated into engineered E. coli and coexpressed with hemA and hemL; cells produced 38.9% PHBV (CDW) with 10.3 mol% 3HV fractions and 3.0 g/L ALA. The coproduction of ALA with PHB and PHBV can improve the utilization of carbon sources and maximize the value derived from the feedstock.  相似文献   

9.
Coupling of biodegradable corncob and plastic carrier was optimized in continuous-flow solid-phase denitrification systems for enhancing simultaneously removal of nitrogen and organics in agricultural runoff. In compared with preposition of plastic carriers and mixed distribution method, it was demonstrated that the preposition of corncobs simultaneously enhanced nitrate (6.64 ± 1.35 mg L?1 day ?1) and organics removal (6.33 ± 1.44 mg L?1 day?1) at a hydraulic retention time (HRT) of 6 h. The operation performance could be further enhanced with extension of HRT to 12 h. The dominant genera found in corncob were denitrifiers for nitrate reduction (Bosea, Simplicispira, Desulfovibrio, Klebsiella, etc.) and fermentative bacteria (Pleomorphomonas, Actinotalea, Opitutus, Cellulomonas, Bacteroides, etc.) responsible for corncob degrading to simple organics for other denitrifiers. However, much lower and different denitrifiers abundances (Bradyrhizobium, Acinetobacter, Bacillus, etc.) exhibited on plastic filler than those of corncob. It well explained that the biofilm on plastic carrier was mainly related with organics removal while the biofilm on corncobs inclined to effectively remove nitrate, and simultaneous removal of nitrogen and organics could be achieved in coupling carriers system with preposition of biodegradable corncob.  相似文献   

10.
The bioremediation of tetrachloroethene (perchloroethene; PCE) contaminated sites generally requires a supply of some fermentable organic substrates as an electron donor. On the other hand, organic substrates can induce the massive growth of microorganisms around the injection wells, which can foul the contaminated subsurface environment. In this study, PCE dechlorination to ethene was performed in a microbial electrochemical system (MES) using the electrode (a cathode polarized at ?500 mV vs. standard hydrogen electrode) as the electron donor. Denaturing gel gradient electrophoresis and pyrosequencing revealed a variety of non-Dehalococcoides bacteria dominant in MES, such as Acinetobacter sp. (25.7 % for AS1 in suspension of M3), Rhodopseudomonas sp. (10.5 % for AE1 and 10.1 % for AE2 in anodic biofilm of M3), Pseudomonas aeruginosa (22.4 % for BS1 in suspension of M4), and Enterobacter sp. (21.7 % for BE1 in anodic biofilm of M4) which are capable of electron transfer, hydrogen production and dechlorination. The Dehalococcoides group, however, was not detected in this system. Therefore, these results suggest that a range of bacterial species outside the Dehalococcoides can play an important role in the microbial electrochemical dechlorination process, which may lead to innovative bioremediation technology.  相似文献   

11.
The reductase component (MhpP) of the Sulfobacillus acidophilus TPY multicomponent phenol hydroxylase exhibits only 40 % similarity to Pseudomonas sp. strain CF600 phenol hydroxylase reductase. Amino acid sequence alignment analysis revealed that four cysteine residues (Cys-X 4 -Cys-X 2 -Cys-X 29-35 -Cys) are conserved in the N terminus of MhpP for [2Fe-2S] cluster binding, and two other motifs (RXYS and GXXS/T) are conserved in the C terminus for binding the isoalloxazine and phosphate groups of flavin adenine dinucleotide (FAD). Two motifs (S/T-R and yXCGp) responsible for binding to reduce nicotinamide adenine dinucleotide phosphate (NADPH) are also conserved in MhpP, although some residues differ. To confirm the function of this reductase, MhpP was heterologously expressed in Escherichia coli BL21(DE3) and purified. UV-visible spectroscopy and electron paramagnetic resonance spectroscopy revealed that MhpP contains a [2Fe-2S] cluster. MhpP mutants in which the four cysteine residues were substituted via site-directed mutagenesis lost the ability to bind the [2Fe-2S] cluster, resulting in a decrease in enzyme-specific oxidation of NADPH. Thin-layer chromatography revealed that MhpP contains FAD. Substrate specificity analyses confirmed that MhpP uses NADPH rather than NADH as an electron donor. MhpP oxidizes NADPH using cytochrome c, potassium ferricyanide, or nitro blue tetrazolium as an electron acceptor, with a specific activity of 1.7 ± 0.36, 0.78 ± 0.13, and 0.16 ± 0.06 U/mg, respectively. Thus, S. acidophilus TPY MhpP is a novel NADPH-dependent reductase component of phenol hydroxylase that utilizes FAD and a [2Fe-2S] cluster as cofactors.  相似文献   

12.
Hwang et al. (Antonie van Leeuwenhoek 109:1345–1352, 2016) proposed the reclassification of Halomonas caseinilytica (Wu et al. 2008) as a later synonym of Halomonas sinaiensis, based on the publication of the latter name in 2007 by Romano et al. However, the name H. sinaiensis was validly published only in 2011. Therefore the proposal by Hwang et al. is not appropriate; instead, the name H. sinaiensis can be proposed as a later synonym of H. casinilytica.  相似文献   

13.
A heterotrophic bacterial strain AGD 8-3 capable of denitrification under extreme haloalkaline conditions was isolated from soda solonchak soils of the Kulunda steppe (Russia). The strain was classified within the genus Halomonas. According to the results of 16S rRNA gene sequencing, Halomonas axialensis, H. meridiana, and H. aquamarina are most closely related to strain AGD 8-3 (96.6% similarity). Similar to other members of the genus, the strain can grow within a wide range of salinity and pH. The strain was found to be capable of aerobic reduction of chromate and selenite on mineral media at 160 g/l salinity and pH 9.5–10. The relatively low level of phylogenetic similarity and the phenotypic characteristics supported classification of strain AGD 8-3 as a new species Halomonas chromatireducens.  相似文献   

14.
15.
Ying Wu  Bing Wang  Dima Chen 《Plant and Soil》2018,431(1-2):107-117

Background and aims

Nitrogen (N) deficiency and drought are two key limiting factors for rice production worldwide, but the relationship of drought stress with N homeostasis in rice is rarely advanced. The aim of this study was to dissect the physiological effects of drought stress on rice growth that coupled unbalanced N metabolism.

Results

Water-deficient stress (WD) limited stomatal aperture function and activity of Rubisco carboxylase to photosynthesis. The rate of total electron transport (Jt) and the electron to carboxylation (Jc) were considerably decreased, whereas the proportion of e? flow to photorespiration was stimulated by WD, especially at 1600 μmol m?2 s?1 PPFD. Concurrently, the expressions of glycolate oxidase genes (GOX1, GOX5) and glycine decarboxylase complex (GDCH, GDCP and GDCT) were significantly induced in leaves of WD treatment, which led to the accumulation of reactive oxygen species in leaves. With the photosynthetic change, nitrate uptake and reduction were suppressed. Moreover, the enhanced photorespiration generated excess NH3 accumulation in leaves and stimulated the expressions of GS1;1, GS1;2 and GS2, which were tightly coupled with the expressions of PEPC1 and PEPC2 under WD stress.

Conclusions

Our results suggest that the inhibited nitrate reduction associated with diminished electron transport rate, and the photorespiration-associated accumulation of hydrogen peroxide and NH3 were critical in the drought-induced rice growth inhibition.
  相似文献   

16.
Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (F v /F m ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.  相似文献   

17.
18.
Thiamine release during synthetic mutualism between Chlorella sorokiniana co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense was measured under stress conditions of pH, light intensity, and nitrogen starvation in short-term experiments. Thiamine release in the co-immobilized treatment was significantly higher at acidic pH compared to thiamine released by either microorganism alone. Under slightly alkaline pH, C. sorokiniana released the highest amount of thiamine. At stressful pH 6, the co-immobilized treatment released a higher quantity of thiamine than the sum of thiamine released by either microorganisms when immobilized separately. Release of thiamine by C. sorokiniana alone or co-immobilized was light intensity dependent; with higher the light intensity, more thiamine was released. Extreme light intensity negatively affected growth of the microalgae and release of thiamine. Nitrogen starvation during the first 24 h of culturing negatively affected release of thiamine by both microorganisms, where C. sorokiniana was more severely affected. Partial or continuous nitrogen starvation had similar negative effects on C. sorokiniana, but co-immobilization improved thiamine release. These results indicate that thiamine is released during synthetic mutualism between C. sorokiniana and A. brasilense, and this happens specifically during the alleviation of pH stress in the microalgae.  相似文献   

19.
The microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) (PLA/PHB) blend foils were investigated in 1 year long laboratory soil burial experiments. Different PLA/PHB foils were tested: (a) PLA/PHB original transparent foil, (b) PLA/PHB carbon black filled foil and (c) PLA/PHB black foil previously exposed for 90 days to sun light. The microbiome diversity of these three types of foil was compared with that identified from soil/perlite sample at the beginning of experiment and that developed on a cellulose mat. Culture-dependent and culture-independent (DGGE-cloning) approaches together with PLA, PHB and PLA/PHB degradation plate assays were employed. The cultivation strategy combined with degradation tests permitted the isolation and evaluation of several PLA/PHB blend degrading microorganisms such as members of the genera Bacillus, Paenibacillus, Streptomyces, Rhodococcus, Saccharothrix, Arthrobacter, Aureobasidium, Mortierella, Absidia, Actinomucor, Bjerkandera, Fusarium, Trichoderma and Penicillium. The DGGE-cloning investigation increased the information about the microbial communities occurring during bioplastic degradation detecting several bacterial and fungal taxa and some of them (members of the orders Anaerolineales, Selenomonadales, Thelephorales and of the genera Pseudogymnoascus and Pseudeurotium) were revealed here for the first time. This survey showed the microbiome colonizing PLA/PHB blend foils and permitted the isolation of several microorganisms able to degrade the tested polymeric blends.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号