首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to dual metastable peak monitoring has been developed, based on synchronous switching of the accelerating voltage and electric sector voltage of a double-focusing mass spectrometer. The technique has been applied to the determination of oestradiol-17beta as the bis(tert-butyldimethylsilyl) ether, using the 2H3 analogue as internal standard. The detection limit was approximately 5 pg during monitoring of the [M]+ X----[M-C4H9]+ fragmentation. Analyses of plasma extracts indicated that greater selectivity of detection was achieved during metastable peak monitoring than during high resolution (8000) selected ion monitoring of the parent ion.  相似文献   

2.
An analytical method to determine the concentration of bupropion in human plasma has been developed using a deuterium-labeled analog as internal standard and selected ion monitoring applied to an extract of plasma samples taken as part of a clinical trial of this antidepressant. In all, 15 depressed outpatients were randomly assigned to bupropion in a double-blind study which included weekly evaluation of their clinical condition. A good correlation was found between the results obtained by this assay and by a radioimmunoassay technique currently in use. While no simple correlation between plasma concentration and therapeutic improvement was noted, the majority of subjects showed mild to marked amelioration of symptoms and those having mean concentrations above 35 ng ml-1 had significant improvement in their test scores. Interpretation of the mass spectra of both the labeled and unlabeled drug revealed an apparent violation of the 'even-electron rule'.  相似文献   

3.
A gas chromatographic—mass spectrometric assay using selected ion monitoring is compared with a high-performance liquid chromatographic assay using an electrochemical detector for single-dose studies of the psychotherapeutic phenothiazine drug chlorpromazine. Measurements were made after extraction of chlorpromazine and the internal standard, prochlorperazine, from basified plasma with an isopropanol—pentane solvent mixture. Following evaporation of the organic solvents the residue was reconstituted in a small volume of methanol and subjected to gas chromatographic—mass spectrometric selected ion detection. The residual sample was then evaporated and made up in a larger volume of acetonitrile and analyzed by high-performance liquid chromatography using an electrochemical detector. These specific methods display excellent correlation for plasma concentration determinations in the range of 0.25–10 ng ml−1 and will allow for the study of the pharmacokinetics of chlorpromazine following single low doses of the drug.  相似文献   

4.
A method for the determination of dihydroetorphine hydrochloride, a powerful anaesthetic and analgesic drug, in biological fluids by GC-MS with selected-ion monitoring using etorphine as internal standard was established. Dihydroetorphine was extracted from human blood and urine with dichloromethane and then derivatized with N-heptafluorobutyrylimidazole after concentration to dryness. A dihydroetorphine monoheptafluorobutyl derivative was formed which showed good behavior on GC-MS with electronic-impact ionization. The main fragment, m/z 522, which is the base peak, was selected as the ion for quantitation and the corresponding ion, m/z 520, was selected for monitoring the internal standard, etorphine. The recoveries and coefficients of variation of the whole procedure were determined with five controlled dihydroetorphine-free urine and plasma samples spiked with different concentrations of dihydroetorphine. The concentration of dihydroetorphine for quantitation was in the range 1–20 ng/ml for urine and 2.5–250 ng/ml for plasma. The correlation coefficients of the standard curves are sufficient to determine the dihydroetorphine. The accuracy for quantitation of dihydroetorphine in urine and plasma is less than 10.6%.  相似文献   

5.
A quantitative bioanalytical method with excellent specificity using liquid chromatography (LC) atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS–MS) combined with a column-switching technique has been developed for the highly sensitive and reliable determination of TS-962 (HL-004), a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, in rat and rabbit plasma. The method involves protein precipitation of a 25-μl aliquot of plasma sample with eight volumes of methanol containing a deuterium-labeled internal standard, the direct injection of a methanolic supernatant into the analytical instrumentation with no sample evaporation and reconstitution steps, automated on-line clean-up on a C18 short trapping column (10 mm×4.0 mm I.D.) followed by separation on a C18 analytical column (50 mm×4.6 mm I.D.), and detection with APCI-MS–MS using m/z 448 ([M+H]+) as a precursor ion and m/z 178 as a product ion in a selected reaction monitoring mode. The lower limit of quantification was 1 ng/ml, and good linearity of the calibration graph was obtained in the range of 1∼490 ng/ml with excellent reliability. The developed method enabled pharmacokinetic profiles to be determined for rats and rabbits with sequential plasma collection from an individual animal.  相似文献   

6.
A selective and sensitive method for the determination of the HIV protease inhibitor saquinavir in human plasma, saliva, and urine using liquid-liquid extraction and LC-MS-MS has been developed, validated, and applied to samples of a healthy individual. After extraction with ethyl acetate, sample extracts were chromatographed isocratically within 5 min on Kromasil RP-18. The drug was detected with tandem mass spectrometry in the selected reaction monitoring mode using an electrospray ion source and 2H(5)-saquinavir as internal standard. The limit of quantification was 0.05 ng/mL. The accuracy of the method varied between -1 and +10% (SD within-batch) and the precision ranged from +4 to +10% (SD batch-to-batch). The method is linear at least within 0.05 and 87.6 ng/mL. After a regular oral dose (600 mg) saquinavir concentrations were detectable for 48 h in plasma and were well correlated with saliva concentrations (r(2)=0.9348, mean saliva/plasma ratio 1:15.1). The method is well suited for low saquinavir concentrations in different matrices.  相似文献   

7.
Testosterone and 3 beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone) have been identified in human parotid fluid and saliva by gas chromatography-mass spectrometry/selected ion monitoring analyses of the t-butyldimethylsilyl ether and methyl oxime, t-butyldimethylsilyl ether derivatives. High specificity of analysis has been achieved by the use of high mass spectrometric resolution or by the monitoring of metastable peaks. Quantitative analyses indicate concentrations of both unconjugated testosterone and unconjugated dehydroepiandrosterone in the range 200-800 pmol/l in the saliva and parotid fluid of the normal males examined. These represent 1.5-7.5% of the concentrations of the steroids in blood plasma taken from the same subjects.  相似文献   

8.
A highly sensitive and specific quantitative assay for the determination of albuterol in human plasma, based on selected ion monitoring gas chromatography chemical ionization mass spectrometry, has been developed. The [MH]+ ions from the tri-TMS derivatives of albuterol (m/z 456) and the internal standard (2H3)albuterol (m/z 459), were assayed simultaneously by selected ion monitoring. The lower limit of quantitation is 0.25 ng ml-1 and the average assay precision (CV) for albuterol concentrations ranging from 0.25 ng ml-1 to 25 ng ml-1 is approximately 4%. This method is currently being employed for the routine quantitation of albuterol in plasma following the administration of doses therapeutically effective to man.  相似文献   

9.
A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of zolmitriptan was developed and validated over the linearity range 0.05-30 ng/ml with 0.5 ml of plasma using diphenhydramine as the internal standard. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring (SRM) mode using the atmospheric pressure chemical ionization (APCI) technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitrile-water-formic acid (70:30:0.5), at a flow rate of 0.5 ml/min. In positive mode, zolmitriptan produced a protonated precursor ion at m/z 288 and a corresponding product ion at m/z 58. And internal standard produced a protonated precursor ion at m/z 256 and a corresponding product ion at m/z 167. The inter- and intra-day precision (%R.S.D.) were less than 8.5% and accuracy (%error) was less than -2.5%. The method had a lower limit of quantification of 0.05 ng/ml for zolmitriptan, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokinetic study of zolmitriptan after an oral administration of 5 mg zolmitriptan to 20 healthy volunteers.  相似文献   

10.
Glucosamine is an amino monosaccharide reagent. It is difficult to assay using typical reversed-phase column due to the early elution, by optimizing the chromatographic conditions, especially the analytical column and the mobile phase composition, an improved analytical method was developed and validated, which offers rapid, sensitive and specific determination of glucosamine in human plasma. Following protein precipitation, the analyte and internal standard (valibose) were separated using an isocratic mobile phase on an Inertsil CN-3 column and detected by mass spectrometry in the multiple reaction monitoring mode using the respective precursor to product ion combinations of m/z 180/72 for glucosamine and m/z 252/198 for valibose. The chromatographic time was just 4.2 min for each sample, which made it possible to analyze more than 120 human plasma samples per day. The method exhibited a linear dynamic range of 4.00-4000 ng/mL for glucosamine in human plasma. The lower limit of quantification (LLOQ) was 4.00 ng/mL with a relative standard deviation of less than 10.9%. Acceptable precision and accuracy were obtained for the plasma concentrations over the standard curve range. By monitoring the two different MRM transitions, it was proved that no endogenous glucosamine was found in human plasma. The validated method has been successfully used to analyze human plasma samples for application in a bioequivalence study.  相似文献   

11.
A rapid, sensitive, specific, accurate, and reproducible automated liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the quantitative determination of 1'-(2-amino-3-methylbenzoyl)-4-[[[(3-chlorophenyl)sulfonyl]phenyl]methyl]-1,4'-bipiperidine hydrochloride (SCH 211803) in plasma has been developed. The method was validated in rat and monkey plasma over the concentration range of 0.5-250 ng/ml using 2H(4)-SCH 211803 as the internal standard (IS). Automated 96-well plate protein precipitation (PP) with acetonitrile (ACN) was used for sample processing. The method employed a Betasil C18 column with a fast gradient for the separation of analyte and internal standard from the plasma matrix and a triple quadrupole mass spectrometer operated in positive ion multiple reaction monitoring (MRM) mode for detection. The method was used for the determination of SCH 211803 plasma concentrations to support pre-clinical studies.  相似文献   

12.
A method has been developed for the blood level determination of the antihypertensive agent tiamenidine hydrochloride. The serum samples are mixed with deuterium labelled tiamenidine hydrochloride as an internal standard and extracted with methylene chloride. The extracts are derivatized with heptafluorobutyric acid anhydride and analysed by means of gas chromatography mass spectrometry using the selected ion monitoring technique to measure the molecular ion intensities of the bis-heptafluorobutyryl derivatives of tiamenidine hydrochloride and of the internal standard. Using 5 ml serum, the limit of detection is 0.2 ng ml-1 with an accuracy of +/- 0.17 ng (Syx of the calibration curve).  相似文献   

13.
A rapid and selective liquid chromatographic/tandem mass spectrometric method for determination of fosfomycin was developed and validated. Following protein-precipitation, the analyte and internal standard (fudosteine) were separated from human plasma using an isocratic mobile phase on an Ultimate XB-CN column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 137-->79 and m/z 178-->91 was performed to quantify fosfomycin and fudosteine, respectively. The method was linear in the concentration range of 0.10-12.0 microg/mL using 50 microL of plasma. The lower limit of quantification was 0.10 microg/mL. The intra- and inter-day relative standard deviation over the entire concentration range was less than 10.6%. Accuracy determined at three concentrations (0.25, 1.00 and 8.00 microg/mL for fosfomycin) ranged from -1.0% to -4.2% in terms of relative error. Each plasma sample was chromatographed within 5.0 min. The method was successfully used in a bioequivalence study of fosfomycin in human plasma after an oral administration of capsules containing 1.0 g fosfomycin (approximately 1.3g calcium fosfomycin).  相似文献   

14.
Twelve compounds representing procarbazine, seven metabolites, and an internal standard were analyzed by gas chromatography—mass spectrometry on a 3% OV-1 column. Procarbazine and four metabolites were derivatized with acetic anhydride.A sensitive, specific and quantitative assay was established by selected ion monitoring using a synthetic analogue of the drug as an internal standard. The limits of detection were approximately 1 ng/ml of plasma while the limits of quantitation were 10 ng/ml of plasma.Studies on the degradation of procarbazine - HCl in 0.05 M phosphate buffer (pH 7.4) were compared to in vivo studies. At 1 h after incubation of procarbazine - HCl in buffer, the azo and aldehyde metabolites were detected in the highest concentrations representing 27.2% and 20.3% of total drug and metabolites. In the in vivo studies, analyses of rat plasmas indicated that 1 h after an oral dose of procarbazine - HCl, the aldehyde metabolite represented 72% of the total drug and metabolites, and that relatively little of the azo metabolite was present.  相似文献   

15.
We devised a simple and effective purification method for the microdetermination of 6,15-diketo-13,14-dihydro-prostaglandin F1alpha (DK), a metabolite of prostacyclin (PGI2). [18O]DK was synthesized from the repeated base-catalyzed hydrolysis of methyl ester derivatives in [18O] water to obtain an internal standard for the gas chromatography/selected ion monitoring (GC/SIM) of DK. The methyl ester-methoxime-tert-butyldimethylsilyl ether derivative was prepared, then gas chromatography/selected ion monitoring was carried out by monitoring the ion at m/z 613.4 for DK and at m/z 617.4 for an internal standard. A good linear response over the range of 10 pg to 10 ng was demonstrated. We detected DK to a level of about 297.8 pg/ml in human plasma. This method can be used to determine DK in biological samples.  相似文献   

16.
A sensitive assay using high-performance liquid chromatography tandem mass spectrometry (MS/MS) has been established for the quantitative analysis of cytochrome P450 form-specific activities using warfarin as a probe substrate. Four metabolites, 6-, 7-, 8-, and 10-hydroxywarfarin, were chromatographically resolved within 10 min using gradient mobile phases. The mass spectrometry was operated under negative ionization mode. The MS/MS product ion spectra of warfarin and the metabolites were generated using collision-activated dissociation and interpreted. The abundant product ions of the metabolites were selected for quantification applying multiple reaction monitoring. Quantification was based on a quadratic or power curve of the peak area ratio of the metabolite over the internal standard against the respective concentration of the metabolite. This assay has been validated from 2 to 1000 nM for 10-hydroxywarfarin and from 2 to 5000 nM for 6-, 7-, and 8-hydroxywarfarin and successfully applied to evaluate cytochrome P450-mediated drug-drug interactions in vitro using human hepatocytes and liver microsomal preparations.  相似文献   

17.
A methane chemical ionization quantitative assay for methylphenidate and its major metabolite, ritalinic acid, is described. Methylphenidate and the internal standard, ethylphenidate, were extracted from plasma samples and derivatized to prevent thermal decomposition in the gas chromatography. Ritalinic acid was esterified with diazomethane and extracted as methylphenidate. The intensity of the protonated molecular ion of the derivatized drug and internal standard was measured by selected ion monitoring. Calibration curves were prepared from drug standards dissolved in drug-free plasma, and the lower limit of the curves extended to 0.5 ng methylphenidate per ml plasma. The method was used to generate plasma decay curves for pediatric patients undergoing methylphenidate therapy.  相似文献   

18.
A rapid and sensitive liquid chromatographic/tandem mass spectrometric method for determination of misoprostol acid, the active metabolite of misoprostol, was developed and validated. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a C(18) column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 367-249 and 296-269 was performed to quantify misoprostol acid and the internal standard hydrochlorothiazide, respectively. The method was linear in the concentration range of 10.0-3000 pg mL(-1) using 200 microL plasma. The lower limit of quantification was 10.0 pg mL(-1). The intra- and inter-day relative standard deviation over the entire concentration range was less than 8.3%. Accuracy determined at three concentrations (25.0, 200 and 2700 pg mL(-1) for misoprostol acid) ranged from -0.5 to 1.2% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method was successfully used in a pharmacokinetic study of misoprostol in human plasma after an oral administration of 0.6 mg misoprostol.  相似文献   

19.
Current methods of quantitation of histamine and its major metabolite N tau-methylhistamine are inaccurate and insensitive to the very low concentrations that exist in plasma samples. Therefore, an accurate and sensitive method for quantification in plasma has been developed using the stable isotope dilution assay with negative ion-chemical ionization mass spectrometry. For histamine, after the addition of [2H4]histamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the pentafluorobenzyl derivative (CH2C6F5)3-histamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 430/434. For N tau-methylhistamine, after the addition of N tau-[2H3]methylhistamine to 2 ml of plasma, the plasma sample is deproteinized, extracted into butanol, back extracted into HCl, derivatized to the heptafluorobutyryl derivative (C3F7CO2)2-N tau-methylhistamine, purified on silica gel columns, and then quantified with negative ion-chemical ionization mass spectrometry by selected ion monitoring of the ratio of ions m/z 497/500. The precision of the histamine assay is 3.1% and the accuracy is 95.5 +/- 2.5% while the precision of the N tau-methylhistamine assay is 1.9% and the accuracy is 106.8 +/- 1.9%. The lower limits of sensitivity are 1 pg for histamine and 6 pg for N tau-methylhistamine injected on column. Using the assay in three normal human volunteers, plasma concentrations of histamine were 130, 92, and 85 pg/ml, and of N tau-methylhistamine were 229, 228, and 216 pg/ml. This assay provides a very sensitive and accurate method of quantitation of histamine and N tau-methylhistamine in plasma samples.  相似文献   

20.
N-(Phosphonacetyl)-l-aspartic acid (PALA) is an antitumor agent which is currently under clinical study. A gas chromatography—mass spectrometry—selected ion monitoring assay procedure using [13C]PALA as the internal standard has been developed for the quantitation of PALA in biological samples. Standard curves which related ion intensity peak height ratios (m/e 220/221) to PALA concentrations in plasma and urine were described by a non-linear least square analysis with correlation coefficients of R2 > 0.995 and > 0.996, respectively. Over concentration ranges for PALA of 1–60 μg/ml of plasma and 1–160 μg/ml of urine the coefficient of variation from the fitted curve was 4–18%. This methodology has been used to quantitate PALA in human plasma samples in a study on the clinical pharmacology of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号