首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipids were found to be a constant component of rat glomerular basement-membrane preparations. The concentration fell during preparation of basement membrane by sonication of whole glomeruli, but then remained constant despite continued sonication. The proportions of the individual phospholipids were different from those of whole renal tissue or of isolated glomeruli. The basement-membrane preparations had no (Na(+)+K(+))-activated adenosine triphosphatase activity, an enzyme that is bound to plasma membranes. The concentration of lipid P was decreased on exposure in vivo or in vitro to antiserum against basement membrane; 7 days after injection of antiserum there was a change in the phospholipid composition, with a relative increase in phosphatidylcholine and a decrease in sphingomyelin content. The metabolic turnover rate of the lipid P remaining in the membrane was normal, as determined by (32)P incorporation. The loss of phospholipid was associated with decreases in the relative concentrations of hydroxyproline, hydroxylysine and glycine, and relative increases in proline, lysine, serine, threonine and valine. Administration of aminonucleoside and daunomycin produced proteinuria but did not cause a decrease in lipid P. Anticollagen and anti-lymphocyte sera that attached to the basement membrane but failed to produce proteinuria, also failed to affect the phospholipid content.  相似文献   

2.
Summary Congenital nephrosis of the Finnish type (CNF) is a hereditary renal disease of unknown aetiology manifested by massive proteinuria of the newborn and unresponsive to any treatment. In this study kidney samples and cultured glomerular mesangial cells from five patients with CNF were studied by indirect immunofluorescence microscopy for the presence and location of major basement membrane matrix (GBM) components. Histological changes of glomeruli ranging from mild thickening of basement membranes to total obliteration and sclerosis were seen. Notably, thickening of the subepithelial layer of Bowman's capsules was regularly seen along with hypercellularity at the juxtaglomerular areas. The matrix components studied (laminin, plasma- and cellular fibronectin, type IV collagen, including the NC-1, alpha-1 and alpha-3 chains, heparan sulphate proteoglycan (HSPG) core protein, thrombospondin) were characteristically seen within the glomeruli. Local thickenings alternating with total loss of epitopes along the GBM were seen, especially with anti-type IV collagen and anti-HSPG antibodies. Sera from CNF patients after transplantation failed to show antibodies against GBM structures in immunofluorescence microscopy, suggesting that no missing epitopes of GBM are introduced with the transplant kidney. Cultured mesangial cells of CNF glomeruli also showed continued in vitro production of the matrix components and their incorporation into the matrix underneath the cell layer.  相似文献   

3.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

4.
Connective tissue cells synthesize and secrete a group of matrix metalloproteinases (MMPs), all of which are capable of degrading the extracellular-matrix components. One of them, MMP-3 (stromelysin) has been shown to degrade purified basement-membrane components, collagen IV and laminin [Okada, Y., Nagase, H. & Harris, E. D., Jr. (1986) J. Biol. Chem. 261, 14245-14255]. Here we report that MMP-3 degrades collagen IV and laminin in intact basement membranes from bovine glomeruli (GBM) and bovine anterior-lens capsules (LBM). Degradation products were analysed by SDS/polyacrylamide-gel electrophoresis to determine the number and sizes of polypeptide fragments. Immunoblotting techniques were used to identify the origins of the fragments, i.e. collagen IV or laminin. The fragments of collagen IV were further mapped using specific antibodies that recognize the N-terminal (7 S) domain, the C-terminal (NC-1) domain, or the major triple-helical region between the terminal domains. Degradation of collagen IV was extensive; many fragments were found, from both GBM and LBM, in the Mr range 25,000-380,000. A large fragment of laminin (Mr greater than 380,000) was found in the GBM digests without reduction, but it dissociated into 220,000-Mr chains upon reduction. The results suggest that MMP-3 plays an important role in the catabolism of basement membranes.  相似文献   

5.
Macromolecular organization of bovine lens capsule   总被引:3,自引:0,他引:3  
Rabbit antisera to type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin were used to localize these proteins in cross-sections of bovine anterior lens capsule. The antisera were exposed to (a) 10-micron frozen-thawed sections of formaldehyde-fixed tissue for examination in the light microscope by the indirect immunofluorescence method and (b) formaldehyde-fixed and L. R. White plastic-embedded thin sections for electron microscopic examination by the protein A-gold technique. The intensity of immunofluorescence was both uniform and strong throughout for type IV collagen, laminin and entactin, but patchy and weak for fibronectin. Electron microscopic immunolabeling with protein A-gold showed that all five components were distributed throughout the full thickness of the membrane, albeit the density of gold particles was not identical for all basement membrane proteins. In general, the number of particles per micron2 was greatest for type IV collagen and entactin, moderate for laminin and heparan sulfate proteoglycan and low for fibronectin. The ultrastructure of the lens capsule as examined by the electron microscope revealed a relatively uniform parallel alignment of filaments, thought to be collagenous. Since the distribution of the filaments corresponds well with the observed immunocytochemical pattern it is concluded that type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin co-localize throughout the cross-section of the anterior lens capsule.  相似文献   

6.
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.  相似文献   

7.
The histogenesis of renal basement membranes was studied in grafts of avascular, 11-day-old mouse embryonic kidney rudiments grown on chick chorioallantoic membrane (CAM). Vessels of the chick CAM invade the mouse tissue during an incubation period of 7-10 days and eventually hybrid glomeruli composed of mouse epithelium and chick endothelium form. Formation of basement membranes during this development was followed by immunofluorescence and immunoperoxidase stainings using polyclonal and monoclonal antibodies against mouse and chick collagen type IV and against mouse laminin. These antibodies were species-specific as shown in immunochemical and immunohistologic analyses. The glomerular basement membrane contained both mouse and chick collagen type IV, demonstrating its dual cellular origin. All other basement membranes were either exclusively of chick origin (mesangium, vessels) or of mouse origin (tubuli, Bowman's capsule).  相似文献   

8.
Glomeruli were isolated from rat renal cortex and incubated with radioactive lysine to study in vitro collagen synthesis in these preparations. Glomerular basement membrane was obtained by sonication, and the appearance of [-14C]lysine and hydroxylysine in medium, membrane and intracellular proteins was determined. Total glomerular incorporation of [-14C]lysine into protein linearly increased for up to 2-h period, and membrane hydroxylysine content gradually rose during this time. Hydroxy[-14C]lysine was recovered in the 105 000 times g pellet, reaching a hydroxylysine content of 22 percent in this intracellular fraction after 90 min of incubation. 60 percent of the protein secreted into the medium, and about 75 percent of newly synthesized sonicated basement membrane was acetic acid soluble. Hydroxylysine content was 33 percent in the acetic acid-insoluble fraction of sonicated membrane, suggesting that basement-membrane collagen was a significant component of total collagen synthesized by these preparation, The ability of isolated glomeruli to synthesize and secrete basement-membrane protein will be useful for studies concerning control of glomerular collagen and basement-membrane synthesis.  相似文献   

9.
Tripterine is a chemical isolated from a traditional Chinese herb which had been testified for its anti-inflammatory and immunosuppressive activities in a previous study. However, little is known about the effects and mechanism of action of Tripterine on treating lupus nephritis. In the present study we investigated the effect of Tripterine on the F1 hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice which functioned as a model of human systemic lupus erythematosus (BW F1 mice) and evaluated the possible mechanism implicated in the mRNA expression of TGF-beta1 and collagen IV expression of the BW F1 mice kidney tissue. Different doses of Tripterine were injected peritoneally to BW F1 mice at different stages to study the preventive effects of Tripterine on lupus nephritis glomerulosclerosis and its mechanisms. Twenty-four hour urine protein excretion, serum anti-dsDNA antibodies and the expression of collagen type IV were examined by immunohistochemistry while the expression of TGF-beta1 mRNA was detected by RT nested PCR. Tripterine decreased urine protein excretion and the level of serum anti-dsDNA antibodies and also suppressed the expression of collagen type IV and TGF-beta1 mRNA in the murine kidney tissue. Administration of Tripterine before the occurrence of proteinuria had much greater protective effects than if it was administered after the occurrence of proteinuria. No significant difference was found between the 3 mg/kg/week Tripterine-treated-group and the 6 mg/kg/week Tripterine-treated-group. Tripterine had a definite protective effect on glomerulosclerosis of the lupus murine model. Tripterine could significantly reduce the amount of urine protein excretion, suppress the formation of serum anti-dsDNA antibodies, it could also efficiently decrease the expression of renal collagen type IV probably due to its suppressive effect on the expressions of local TGF-(1 mRNA) in this model.  相似文献   

10.
In previous studies antilaminin antibodies in the sera of immunized monkeys and rats were found to be toxic to cultured rat embryos. In order to extend these studies to humans, head-fold stage rat embryos were cultured for 48 hours on ten different serum samples from individuals with Chagas' disease. All embryos (n = 20) cultured on these sera were found to be abnormal. Using ELISA, Western immunoblot, and indirect immunofluorescence it could be shown that antibodies in these sera reacted with laminin. That these antilaminin antibodies were, at least in part, responsible for the toxicity was indicated 1) by reduced cultured embryo toxicity for six of seven serum samples after pre-absorption with purified laminin, 2) by demonstrating a relationship between the amount of affinity-purified antilaminin IgG added to control serum for culture and the severity of embryo abnormalities seen at the end of culture, and 3) by the sera's failing to react with other basement membrane proteins, including type IV collagen, fibronectin, osteonectin, and heparan sulfate proteoglycan.  相似文献   

11.
Anti-basement membrane glomerulopathy in experimental trypanosomiasis   总被引:4,自引:0,他引:4  
The nature of kidney lesions in BD IX rats infected with Trypanosoma brucei was investigated. Proteinuria developed and increased up to 236 +/- 35 mg/24 hr at 7 wk after the infection. Antibodies were found to be deposited along the glomerular basement membrane (GBM) predominantly in a linear fashion, which changed to a more granular pattern 7 wk after the infection. At this stage of the disease, electron-dense deposits were found subendothelially along the GBM. In the sera and kidney eluates of diseased rats, anti-GBM antibodies were present. Enzyme-linked immunosorbent assay (ELISA) studies showed antibodies which reacted with GBM components laminin and type IV collagen and not with fibronectin. The antibody specificity was confirmed by using competitive and cross-absorption ELISA techniques, as well as immunoblotting. With the use of indirect immunofluorescence, no common antigenic sites were found on trypanosomes and GBM components. The observed linear immunofluorescence pattern seems to be caused by glomerular binding of antibodies directed against laminin and type IV collagen, which are known to be able to induce renal disease. Subendothelial complex formation in later stages of the disease might result from a molecular rearrangement of GBM components after in situ binding of the antibodies. The formation of auto-antibodies directed against laminin and type IV collagen is probably caused by restricted polyclonal B cell stimulation, a well known feature of trypanosomiasis.  相似文献   

12.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

13.
We have studied susceptibility of basement membranes in a variety of tissues to solubility in guanidine hydrochloride and to proteolytic degradation by trypsin and thermolysin. Unfixed sections from embryonic and adult mouse tissues and the EHS tumor were subjected to solvent buffers or digested with enzymes. The retention or disappearance of the basement-membrane components nidogen, laminin, collagen IV, and heparan sulfate proteoglycan was subsequently assayed by immunofluorescence. Our data showed that in all tissues nidogen was the most readily solubilized component and the most susceptible to proteolytic degradation. With few exceptions, nidogen in embryonic tissues was more susceptible to degradation than that in adult tissues, and this correlated well with the susceptibility of the other basement-membrane components to be degraded. We conclude that basement membranes differ quite markedly in their solubility and their susceptibility to proteolytic degradation and that these properties reflect differences in their molecular structure.  相似文献   

14.
In cell cultures of quail, chick, or mouse skeletal muscle, both myogenic and fibrogenic cells synthesize and secrete type-IV collagen, a major structural component of the basal lamina. Type-IV collagen, together with laminin, forms characteristic patches and strands on the surface of developing myotubes, marking the onset of basement-membrane formation. The pattern for type-IV collagen and laminin is unique to these proteins and is not paralleled by other matrix proteins, such as fibronectin or type-I or -III collagen. In the present study, we used species-specific antibodies to either mouse or chick type-IV collagen to demonstrate the ability of fibroblast--derived type-IV collagen to incorporate in the basal lamina of myotubes. In combination cultures of embryonic quail skeletal myoblasts and mouse muscle fibroblasts, antibodies specific for mouse type-IV collagen revealed the deposition of type-IV collagen on the surface of quail myotubes in the pattern typical of the beginning of basement-membrane formation. Control cultures consisting of only quail muscle cells containing myoblasts and fibroblasts demonstrated no such reaction with these antibodies. Deposits of mouse type-IV collagen were also observed on the surface of quail myotubes when conditioned medium from mouse muscle fibroblasts was added to quail myoblast cultures. Similarly, in combination cultures of mouse myoblasts and chick muscle fibroblasts, chick type-IV-collagen deposits were identified on the surface of mouse myotubes. These results indicate that type-IV collagen synthesized by muscle fibroblasts may be incorporated into the basal lamina forming on the plasmalemma of myotubes, and may explain ultrastructural studies by Lipton on the contribution of fibroblasts to the formation of basement membranes in skeletal muscle.  相似文献   

15.
The appearance of extracellular matrix molecules and their receptors represent key events in the differentiation of cells of the kidney. Steady-state mRNA levels for a laminin receptor, the laminin B1, B2, and A chains, and the alpha 1-chain of collagen IV (alpha 1[IV]), were examined in mouse kidneys at 16 d gestation and birth, when cell differentiation is active, and 1-3 wk after birth when this activity has subsided. Northern analysis revealed that mRNA expression of laminin receptor precedes the alpha 1(IV) and laminin B chains whereas laminin A chain mRNA expression was very low. In situ hybridization reflected this pattern and revealed the cells responsible for expression. At 16 d gestation, laminin receptor mRNA was elevated in cells of newly forming glomeruli and proximal and distal tubules of the nephrogenic zone located in the kidney cortex. These cells also expressed mRNA for alpha 1(IV) and laminin chains. At birth, mRNA expression of receptor and all chains remained high in glomeruli but was reduced in proximal and distal tubules. At 1 wk after birth, expression was located in the medulla over collecting ducts and loops of Henle. Little expression was detectable by 3 wk. These results suggest that cellular expression of steady-state mRNA for laminin receptor, laminin, and collagen IV is temporally linked, with laminin receptor expression proceeding first and thereafter subsiding.  相似文献   

16.
Change in the localization of the antigen recognized by the proteinuria-inducing monoclonal antibody (MA) 5-1-6 in experimental nephrosis was studied by indirect and biotin-avidin immunofluorescence, and immunoperoxidase at light and electron microscopical levels. The proteinuric state was induced by the administration of the aminonucleoside of puromycin (PAN) or adriamycin. The antigen decreased in quantity and/or its distribution changed with an increase in the amount of protein excreted in both experimental models. Recovery from the alterations observed during the development and proteinuria appeared to occur when PAN-induced proteinuria subsided. This antigenic molecule may thus be essential for maintaining the normal permselectivity of glomerular capillary walls.  相似文献   

17.
Hyaluronic acid binding protein (HABP) has been purified to homogeneity from normal adult rat kidney by hyaluronate Sepharose affinity chromatography, and its apparent molecular mass was found to be 68 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of HABP under reducing as well as nonreducing conditions revealed a single protein band of 34 kDa, thus indicating that kidney HABP is a homodimer and lacks interchain disulfide bond. Its glycoprotein nature was demonstrated by Con-A binding analysis. The pI value of kidney HABP was 6, indicating its acidic nature. Polyclonal antibodies were raised against it, and the monospecificity of the antibodies towards HABP was confirmed by Western blot analysis of tissue extracts. Immunoblot analysis has elucidated the occurrence of this glycoprotein in various tissues. Moreover, HABP present in these tissues are shown to be structurally and immunologically identical. However, this glycoprotein is antigenically distinct from other well characterized extracellular proteins, e.g., fibronectin, laminin and collagen type IV. With the help of enzyme-linked immunosorbent assay (ELISA) and iodinated [125I]HABP, it has been shown that kidney HABP binds specifically to hyaluronic acid (HA) amongst all the glycosaminoglycans (GAGs), however, HABP can interact with other matrix proteins, e.g., laminin, fibronectin, and collagen type IV. The apparent dissociation constants of HABP for HA, laminin, fibronectin, and collagen type IV were approximately in the range of 10(-9) M, and kinetic analysis showed that these binding interactions were complex and of positive cooperative nature. Indirect immunofluorescence staining demonstrated its localization on human fetus lung fibroblast cell surface. Detection of 34 kDa HABP in the serum-free supernatant culture medium of fibroblasts was further evident by immunoblot analysis, thus confirming the secretory nature of HABP and its occurrence in the extracellular matrix.  相似文献   

18.
Appearance and distribution of the different collagen types and the noncollagenous glycoprotein laminin was studied during early mouse development from unfertilized ova to 8-day embryos using indirect immunofluorescence techniques. Laminin was first detected intracellularly in the 16-cell compacted morula and appeared also intercellularly along cell contours. Type IV collagen was first seen in the blastocyst mainly in the inner cell mass. After implantation intense fluorescence for both of these proteins was found in all the embryonic and extraembryonic basement membranes. The interstitial collagens type I and III were first detected in the 8-day embryo closely codistributed in tissues of mesodermal origin including the head and heart mesenchymes and in basement membranes bounded by mesodermal structures. The results establish a developmental sequence for the appearance of basement membrane and extracellular matrix glycoproteins in early mouse development. The distribution of laminin suggests the presence of extracellular matrix material already in compacted morulae. The appearance of type IV collagen coincides with differentiation of the primitive endoderm and assembly of the first embryonal basement membrane. The appearance of the interstitial collagens during mesoderm differentiation indicates a stage when mesoderm acquires connective tissue characteristics.  相似文献   

19.
Immunohistochemical methods were used to determine whether type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan were present in diverse basement membranes. Antisera or antibodies against each substance were prepared, tested by enzyme-linked immunosorbent assay, and exposed to frozen sections of duodenum, trachea, kidney, spinal cord, cerebrum, and incisor tooth from rats aged 20 days to 34 months. Bound antibodies were then localized by indirect or direct peroxidase methods for examination in the light microscope. Immunostaining for type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan was observed in all of the basement membranes encountered. Fibronectin was also found in connective tissue. In general, the intensity of immunostaining was strong for type IV collagen and laminin, moderate for heparan sulfate proteoglycan, and weak for fibronectin. The pattern was similar in the age groups under study. Very recently the sulfated glycoprotein, entactin, was also detected in the basement membranes of the listed tissues in 20-day-old rats. It is accordingly proposed that, at least in the organs examined, type IV collagen, laminin, fibronectin, heparan sulfate proteoglycan, and entactin are present together in basement membranes.  相似文献   

20.
The effect of hydrocortisone on the development of dorsal skin was analyzed in the chick embryo by (1) transmission electron microscopy, (2) indirect immunofluorescence histology of extracellular matrix components (collagen types I, III, and IV; fibronectin; and laminin), and (3) quantitative determination of collagen content and proline incorporation, between administration of the drug at 6 or 6.5 days and final retrieval of skin pieces at 11 days of incubation. Treatment caused the formation of featherless skin areas which exhibited an early maturation of the epidermis, a uniform distribution of interstitial collagen and rarefaction of fibronectin in the dermal extracellular matrix, and a significant increase of collagen content and proline incorporation in collagen noncollagen proteins, characterized by an increased hydroxyproline-to-proline ratio. The distribution of type IV collagen and of laminin was unchanged. The absence of feather formation in hydrocortisone-induced apteria is interpreted as resulting primarily from an early extinction of epidermal morphogenetic competence, and secondarily from modifications in the amount and distribution of extracellular matrix components in the dermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号