首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Acetylated and/or 3,5‐dimethylphenylcarbamated riboflavins were prepared and the resulting riboflavin derivatives as well as natural riboflavin were regioselectively immobilized on silica gel through chemical bonding at the 5’‐O‐ or 3‐N‐position of the riboflavin to develop novel chiral stationary phases (CSPs) for enantioseparation by high‐performance liquid chromatography (HPLC). The chiral recognition abilities of the obtained CSPs were significantly dependent on the structures of the riboflavin derivatives, the position of the chemical bonding on the silica gel, and the structures of the racemic compounds. The CSPs bonded at the 5’‐O‐position on the silica gel tended to well separate helicene derivatives, while the CSPs bonded at the 3‐N‐position composed of acetylated and 3,5‐dimethylphenylcarbamated riboflavins showed a better resolving ability toward helicene derivatives and bulky aromatic racemic alcohols, respectively, and some of them were completely separated into the enantiomers. The observed difference in the chiral recognition abilities of these riboflavin‐based CSPs is discussed based on the difference in their structures, including the substituents of riboflavin and the positions immobilized on the silica gel. Chirality 27:507–517, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Novel chiral selectors based on 3,5-dimethyl phenylcarbamoylated β-cyclodextrin connecting quinine (QN) or quinidine (QD) moiety were synthesized and immobilized on silica gel. Their chromatographic performances were investigated by comparing to the 3,5-dimethyl phenylcarbamoylated β-cyclodextrin (β-CD) chiral stationary phase (CSP) and 9-O-(tert-butylcarbamoyl)-QN-based CSP (QN-AX). Fmoc-protected amino acids, chiral drug cloprostenol (which has been successfully employed in veterinary medicine), and neutral chiral analytes were evaluated on CSPs, and the results showed that the novel CSPs characterized as both enantioseparation capabilities of CD-based CSP and QN/QD-based CSPs have broader application range than β-CD-based CSP or QN/QD-based CSPs. It was found that QN/QD moieties play a dominant role in the overall enantioseparation process of Fmoc-amino acids accompanied by the synergistic effect of β-CD moiety, which lead to the different enantioseparation of β-CD-QN-based CSP and β-CD-QD-based CSP. Furthermore, new CSPs retain extraordinary enantioseparation of cyclodextrin-based CSP for some neutral analytes on normal phase and even exhibit better enantioseparation than the corresponding β-CD-based CSP for certain samples.  相似文献   

4.
L ‐Dibenzoyl tartaric acid was mono‐esterified with benzyl alcohol, and then chlorinated with SOCl2 to give (2S,3S)‐1‐(benzyloxy)‐4‐chloro‐1,4‐dioxobutane‐2,3‐diyl dibenzoate (Selector 1 ). (1R,2R)‐1,2‐Diphenylethylenediamine was mono‐functionalized with phenyl isocyanate and phenylene diisocyanate in sequence to give (1R,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐ isocyanatophenylurea (Selector 2 ). Two brush‐type chiral stationary phases (CSPs) of single selector were prepared by separately immobilizing selectors 1 and 2 on aminated silica gel. Selectors 1 and 2 were simultaneously immobilized on aminated silica gel to give a mixed selector CSP. The enantioseparation ability of these CSPs was studied. The CSP of selector 1 has strongest separation ability, while the enantioseparation ability of the mixed selector CSP is relatively lower. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Chen J  Li MZ  Xiao YH  Chen W  Li SR  Bai ZW 《Chirality》2011,23(3):228-236
(2S,3S)-2,3-Bis(3,5-dimethylphenylcarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid and (2S,3S)-2,3-bis(1-naphthalenecarbonyloxy)-3-(benzyloxycarbonyl)-propanoic acid were synthesized from D-tartaric acid. These two compounds were chlorinated to afford two chiral selectors for chiral stationary phases (CSPs). The selectors were separately immobilized on aminated silica gel to give two single selector CSPs; and were simultaneously immobilized to obtain a mixed selector CSP. Comparing to the single selector CSPs, the mixed selector CSP bears the enhanced enantioseparation ability, suggesting that the two selectors in the mixed selector CSP are consistent for chiral recognition in most mobile phase conditions.  相似文献   

6.
Yin CQ  He BJ  Li SR  Liu YQ  Bai ZW 《Chirality》2009,21(4):442-448
A chiral selector was prepared through the reaction between (1S,2R)-(+)-2-amino-1,2-diphenylethanol and phenyl isocyanate. This selector was immobilized on aminated silica gel, respectively, with bifunctional group linkers of 1,4-phenylene diisocyanate, methylene-di-p-phenyl diisocyanate, and terephthaloyl chloride to produce corresponding three chiral stationary phases. The prepared compounds and chiral stationary phases were characterized by FT-IR, elemental analysis, (1)H NMR, and solid-state (1)H NMR. The enantioseparation ability of these chiral stationary phases was evaluated with structurally various chiral compounds. The chiral stationary phase prepared with 1,4-phenylene diisocyanate as linker showed excellent enantioseparation ability. The influence of different linkages on the enantioseparation was discussed.  相似文献   

7.
Tang S  Li X  Wang F  Liu G  Li Y  Pan F 《Chirality》2012,24(2):167-173
Four regioselective-carbamoylated cellulose derivatives having two different substituents at 2-, 3-, and 6-position were prepared and evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography. Investigations showed that the nature and arrangement of the substituents significantly influenced the chiral recognition abilities of the heterosubstituted cellulose derivatives and each derivative exhibited characteristic enantioseparation. Some racemates were better resolved on these derivatives than the corresponding homogeneously substituted cellulose derivatives including a commercial CSP, Chiralcel OD. Racemic compounds shown in this study were most effectively discriminated on cellulose 2,3-(3-chloro-4-methylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate) and 2,3-(3,5-dimethylphenylcarbamate)-6-(3-chloro-4-methylphenylcarbamate).  相似文献   

8.
《Chirality》2017,29(9):512-521
Six novel regioselectively substituted amylose derivatives with a benzoate at 2‐position and two different phenylcarbamates at 3‐ and 6‐positions were synthesized and their structures were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Their enantioseparation abilities were then examined as chiral stationary phases (CSPs) for high‐performance liquid chromatography (HPLC) after they were coated on 3‐aminopropyl silica gels. Investigations indicated that the substituents at the 3‐ and 6‐positions played an important role in chiral recognition of these amylose 2‐benzoate serial derivatives. The derivatives demonstrated characteristic enantioseparation and some racemates were better resolved on these derivatives than on Chiralpak AD, which is one of the most efficient CSPs, utilizing coated amylose tris(3,5‐dimethylphenylcarbamate) as the chiral selector. Among the derivatives prepared, amylose 2‐benzoate‐3‐(phenylcarbamate/4‐methylphenylcarbamate)‐6‐(3,5‐dimethylphenylcarbamate) exhibited chiral recognition abilities comparable to that of Chiralpak AD and may be useful CSPs in the future. The effect of mobile phase on chiral recognition was also studied. In general, with the decreased concentration of 2‐propanol, better resolutions were obtained with longer retention times. Moreover, when ethanol was used instead of 2‐propanol, poorer resolutions were often achieved. However, in some cases, improved enantioselectivity was achieved with ethanol rather than 2‐propanol as the mobile phase modifier.  相似文献   

9.
Chiral stationary phases (CSPs) prepared by mixing together two different cellulose derivatives, before or after being coated on macroporous silica gel, were developed in order to determine the mutual influence of two different polymers on global chiral recognition capacity. The chromatographic properties of these CSPs were evaluated using a wide range of racemic test solutes. The mixing method does not significantly affect the enantioselectivities. The composite CSPs obtained by cocoating of two different cellulose derivatives on silica generally exhibit chiral recognition capacities intermediate between those of the two individual phases, and thus broadening the application range of a single column. These results indicate that the simultaneous coating of two different cellulose derivatives does not significantly alter the optical resolution power of each chiral material and are discussed in relationship with the supramolecular structure of the polymeric stationary phases. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Chen X  Zou H  Yang L  Wang H  Zhang Q 《Chirality》2000,12(8):621-626
Microcrystalline celluloses from two sources were used to prepare cellulose triacetate chiral stationary phases (CSPs) coated on underivatized silica gel, which shows discriminating chiral recognition for enantiomers. The chiral separation of four alpha-alkyl phenyl acetonitriles was investigated on the prepared CSPs. It was observed that the concentration of the coating solvent of phenol in dichloromethane plays an important role in the resolution of the solutes. A series of primary alcohols, including secondary and tertiary alcohols, were used as mobile phase modifiers to investigate the effect of the structures of these modifiers on the capacity factors (k') and the separation factors (alpha). Also, the effect of the concentration of alcohol on the capacity factors and separation factors was examined. The chiral recognition mechanism of alpha-alkyl phenyl acetonitriles on the prepared CSPs is discussed. Copyright 2000 Wiley-Liss, Inc.  相似文献   

11.
Dai Z  Ye G  Pittman CU  Li T 《Chirality》2012,24(4):329-338
A protocol was developed for the solution-phase synthesis of multigram amounts of two 9-fluorenylmethoxycarbonyl (Fmoc)-protected tetraproline peptides. These tetraproline peptides were then attached to amino derivatized silica gel. The replacement of the Fmoc group with the trimethylacetyl group lead to two tetraproline chiral stationary phases (CSPs). A comparison of the chromatographic behavior of these two solution-phase-synthesized tetraproline CSPs with that prepared by stepwise solid-phase synthesis revealed that all three had similar chromatographic performance for resolving 53 model analytes. This suggests that the solution-phase synthesis of oligoprolines, which allows for the specific benefits of good batch reproducibility, selector homogeneity, and possibly low cost, is a feasible alternative to the solid-phase synthesis of oligoproline CSPs.  相似文献   

12.
This study describes the enantioseparation of three chiral amines as naphthaldimine derivatives, using normal phase HPLC with amylose and cellulose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (CSPs). Three chiral amines were derivatized using three structurally similar naphthaldehyde derivatizing agents, and the enantioselectivity of the CSPs toward the derivatives was examined. The degree of enantioseparation and resolution was affected by the amylose or cellulose-derived CSPs and aromatic moieties as well as a kind of chiral amine. Especially, efficient enantiomer separation was observed for 2-hydroxynapthaldimine derivatives on cellulose-derived CSPs. Molecular docking studies of three naphthaldimine derivatives of leucinol on cellulose tris(3,5-dimethylphenylcarbamate) were performed to estimate the binding energies and conformations of the CSP–analyte complexes. The obtained binding energies were in good agreement with the experimentally determined enantioseparation and elution order.  相似文献   

13.
Huang SH  Bai ZW  Yin CQ  Li SR  Pan ZQ 《Chirality》2007,19(2):129-140
Two new chiral polymers of different molecular weights were synthesized by the copolymerization of (1R,2R)-(+)-1,2-diphenylethylenediamine, phenyl diisocyanate and terephthaloyl chloride. The polymers were immobilized on aminated silica gel to afford two chiral stationary phases. The polymers and the corresponding chiral stationary phases were characterized by Fourier transform-IR, elemental analysis, 1H and 13C NMR. The surface coverages of chiral structural units on the chiral stationary phases were estimated as 0.27 and 0.39 mmol/g, respectively. The enantioseparation ability of these chiral stationary phases was evaluated with a variety of chiral compounds by high-performance liquid chromatography. The effects of the organic additives, the composition of mobile phases, and the injection amount of sample on enantioseparation were investigated. A comparison of enantioseparation ability between these two chiral stationary phases was made. It was believed that the chain length of polymeric chiral selector significantly affected the enantioseparation ability of corresponding chiral stationary phase.  相似文献   

14.
Four diastereomeric chiral stationary phases (CSPs) based on quinine, quinidine, epiquinine, and epiquinidine tert‐butyl carbamate selectors were synthesized and evaluated under ion exchange HPLC conditions with a set of racemic N‐acylated and N‐oxycarbonylated α‐amino acids as selectands. The enantioseparation potential of quinine‐ and quinidine‐derived CSPs proved to be far superior to that of their C9‐epimeric congeners. The absolute configuration of C9 stereogenic center of the cinchonan backbone of these selectors was identified as the structural feature controlling the elution order. Guided by an X‐ray structure of a most favorable selector–selectand complex and the observed chromatographic enantioseparation data, a chiral recognition model was advanced. The contributions of ion‐pairing, π–π donor–acceptor, hydrogen bonding and steric interactions were established as crucial factors. Chirality 11:522–528, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
Cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) was coated on large-pore silica gels and used as a chiral stationary phase (CSP) for high-performance liquid chromatographic separation of enantiomers. The influences of pore size of silica gel, coating amount of CDMPC, coating solvent, and column temperature on chiral discrimination were investigated. CSPs prepared with a large-pore silica gel having a small surface area showed higher chiral recognition. The amount of CDMPC adsorbed on the silica gel influenced the chiral recognition of some racemates. Loading capacity of racemates increased with an increase of the amount of CDMPC supported on the silica gel, and a CSP coated with 45% CDMPC by weight can be used for both analytical and semi-preparative scale separations. The CDMPC, coated using acetone as the coating solvent, exhibited, in many cases, higher enantioselectivity than that obtained with tetrahydrofuran F as the coating solvent. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Synthesis of novel, multivalent glycodendrimers as ligands for HIV-1 gp120   总被引:2,自引:0,他引:2  
Multivalent neoglycoconjugates are valuable tools for studying carbohydrate-protein interactions. To study the interaction of HIV-1 gp120 with its reported alternate glycolipid receptors, galactosyl ceramide (GalCer) and sulfatide, galactose- and sulfated galactose-derivatized dendrimers were synthesized, analyzed as ligands for rgp120 by surface plasmon resonance, and tested for their ability to inhibit HIV-1 infection of CXCR4- and CCR5-expressing indicator cells. Four different series of glycodendrimers were made by amine coupling spacer-arm derivatized galactose residues, either sulfated or nonsulfated, to poly(propylenimine) dendrimers, generations 1-5. One series of glycodendrimers was prepared from the ceramide saccharide derivative of purified natural GalCer, and another was from chemically synthesized 3-(beta-D-galactopyranosylthio)propionic acid. Synthesis of 3-sulfogalactopyranosyl-derivatized dendrimers was accomplished using the novel compound, 3-(beta-D-3-sulfogalactopyranosylthio)propionic acid. The fourth series was made by random sulfation of the 3-(beta-D-galactopyranosylthio)propionic acid functionalized dendrimers. Structures of the carbohydrate moieties were confirmed by NMR, and the average molecular weights and polydispersities of the different glycodendrimers were determined using MALDI-TOF MS. Surface plasmon resonance studies found that rgp120 IIIB bound to the derivatized dendrimers tested with nanomolar affinity, and to dextran sulfate with picomolar affinity. In vitro studies of the effectiveness of these compounds at inhibiting infection of U373-MAGI-CCR5 cells by HIV-1 Ba-L indicated that the sulfated glycodendrimers were better inhibitors than the nonsulfated glycodendrimers, but not as effective as dextran sulfate.  相似文献   

17.
Recently, we reported the development of new chiral stationary phases (CSPs) for liquid chromatography (LC) based on chiral derivatives of xanthones (CDXs). Based on the most promising CDX selectors, 12 new CSPs were successfully prepared starting from suitable functionalized small molecules including xanthone and benzophenone derivatives. The chiral selectors comprising one, two, three, or four chiral moieties were covalently bonded to a chromatographic support and further packed into LC stainless-steel columns (150 × 2.1 mm I.D.). The enantioselective performance of the new CSPs was evaluated by LC using different classes of chiral compounds. Specificity for enantioseparation of some CDXs was observed in the evaluation of the new CSPs. Besides, assessment of chiral recognition mechanisms was performed by computational studies using molecular docking approach, which are in accordance with the chromatographic parameters. X-Ray analysis was used to establish a chiral selector 3D structure.  相似文献   

18.
Two novel helical poly(phenylacetylene) derivatives containing chiral phenylethyl carbamate residues in the end of each side chain ( PPA-S and PPA-R ) were synthesized by polymerization of the corresponding phenylacetylene monomers using Rh(nbd)BPh4 as a catalyst in DMF. The enantioseparation properties of the polymers were evaluated as coated-type chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Under the same chromatographic conditions, PPA-S and PPA-R showed different enantioseparation properties, indicating that the different interactions between the analytes and the polymers, which result from the different chiral phenylethyl carbamate groups in the end of each side chains. Racemates 1 , 7 , and 8 could be better resolved on PPA-S , while racemate 6 was separated on PPA-R more efficiently. In addition, the coated-type CSPs showed good solvent tolerability and could work without any damage by introducing the polar solvents, such as CHCl3 and THF, in eluent. Moreover, some racemates could be better resolved on these coated-type CSPs with the addition of THF to the eluent.  相似文献   

19.
The immobilization of cellulose 3,5-dimethylphenylcarbamate derivatives having a polymerizable vinyl group, i.e., 4-vinylphenylcarbamate or 2-methacyloyloxyethylcarbamate, on silica gel was examined under various conditions. The immobilization was basically conducted through the radical copolymerization of the derivatives with a vinyl monomer. Several factors, such as the vinyl monomer content and the type and amount of the vinyl group of cellulose derivatives, were varied. The introduction of a vinyl group onto the silica surface resulted in a more efficient immobilization of the cellulose phenylcarbamate derivatives on the silica gel. As the content of the vinyl group on the cellulose derivatives was reduced, the immobilization became more difficult, although the obtained phase exhibited higher chiral recognition abilities. These immobilized CSPs could be stably used with the eluent containing 10% chloroform, which cannot be used for the phase prepared by coating the derivatives on silica gel. Some racemates were better resolved on the immobilized CSP by using chloroform as a component of the eluent.  相似文献   

20.
Proteins display interesting chiral discrimination properties owing to multiple possibilities of intermolecular interactions with chiral compounds. This review deals with proteins which have been used as immobilized chiral selectors for the enantioseparation of drugs in liquid chromatography and capillary electrophoresis. The main procedures allowing the immobilization of proteins onto matrices, such as silica and zirconia particles, membranes and capillaries are first presented. Then the factors affecting the enantioseparation of drugs in liquid chromatography, using various protein-based chiral stationary phases (CSPs), are reviewed and discussed. Last, chiral separations already achieved using immobilized protein selectors in affinity capillary electrochromatography (ACEC) are presented and compared in terms of efficiency, stability and reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号