首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enantiomeric excess of chiral starting materials is one of the important factors determining the enantiopurity of products in asymmetric synthesis. Fifty‐one commercially available chiral reagents used as building blocks, catalysts, and auxiliaries in various enantioselective syntheses were assayed for their enantiomeric purity. The test results were classified within five impurities level (ie, <0.01%, 0.01%‐0.1%, 0.1%‐1%, 1%‐10%, >10%). Previously from 1998 to 2013, several reports have been published on the enantiomeric composition of more than 300 chiral reagents. This series of papers is necessitated by the fact that new reagents are forthcoming and that the enantiomeric purity of the same reagent can vary from batch to batch and/or from supplier to supplier. This report presents chiral liquid chromatography (LC) and gas chromatography (GC) methods to separate enantiomers of chiral compounds and evaluate their enantiomeric purities. The accurate and efficient LC analysis was done using newly introduced superficially porous particle (SPP 2.7 μm) based chiral stationary phases (TeicoShell, VancoShell, LarihcShell‐P, and NicoShell).  相似文献   

2.
《Chirality》2017,29(6):239-246
The enantioselective potential of two polysaccharide‐based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris‐(3,5‐dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose‐based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose‐based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose‐based chiral stationary phase were achieved particularly with propane‐2‐ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO2, respectively. Methanol and basic additive isopropylamine were preferred on amylose‐based chiral stationary phase. The complementary enantioselectivity of the cellulose‐ and amylose‐based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest.  相似文献   

3.
Zhang P  Polavarapu PL  Huang J  Li T 《Chirality》2007,19(2):99-105
A chiral column, with decaproline as the chiral selector, has broad chiral selectivity. To understand the separation mechanism of this chiral column, multiple spectroscopic techniques, including optical rotation, electronic circular dichroism, infrared absorption and vibrational circular dichroism, have been used here to study the conformation of the decaproline oligomer in isopropanol(IPA)/dichloromethane(DCM) mixtures. These studies indicate that decaproline oligomer adopts polyproline II conformation in IPA/DCM solvent system (0% IPA approximately 100% IPA). Hydrogen bonding interactions between C=O groups of decaproline and IPA molecules increase as the content of IPA in the solvent mixture increases up to 60% and become less significant from then onwards. These spectroscopic observations are found to have a good correlation with the enantiomeric separation of racemic 2,2,2-trifluoro-1-[10-(2,2,2-trifluoro-1-hydroxy-ethyl-anthracen-9-yl]-ethanol by the decaproline column.  相似文献   

4.
We describe the use of emulsion liquid membrane technology to perform chiral separations on low molecular weight species. We have reviewed liquid membrane technology in the context of existing process scale chiral separations. We illustrate the potential of this new technique by presenting our results on the selective extraction of phenylalanine enantiomers, using copper (II) N-decyl-(L)-hydroxyproline as a chiral selector in an emulsion liquid membrane configuration. This is compared with an analogous batch solvent extraction system. Initial batch enantiomeric excesses of greater than 40% were observed with the emulsion liquid membrane system compared with around 25% for the solvent extraction system. It was also noted that the system is not limited by the equilibrium capacity constraints of the solvent extraction system. We have shown that kinetic chiral liquid membrane technology offers high productivity and flexibility compared with analogous process scale chiral technologies. Recent transfer of highly specific chiral reversed-phase high-performance liquid chromatographic chemistries have shown that “one-stop” enantiomeric excesses of commercial interest (>95%) are achievable using kinetic chiral liquid membrane systems. Solvent and temperature selection strategies also have been outlined as means of increasing the enantioselectivity of existing liquid membrane extraction chemistries. Chirality 9:261–267, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
D K Lloyd  D M Goodall 《Chirality》1989,1(4):251-264
Chiroptical detection for HPLC is particularly useful as a selective detection method for chiral molecules, and in enantiomeric purity determination with partial chiral separation or without chiral separation. The recent development of laser-based polarimeters with microdegree sensitivity has increased the applicability of optical rotation detection in HPLC. The detection limit of these instruments is submicrogram on-column for many chiral compounds in analytical HPLC. A variety of applications of the selective detection of optically active molecules are reviewed. The use of polarimetric detection with partial chiral separation is considered, both as an aid to method development and for enantiomeric purity determination. Finally applications to enantiomeric purity determination without chiral separation are reviewed, with the dual use of nonchirally selective and chiroptical detectors to determine the total amount and optical purity of the analyte. Determinations of chiral purity for samples of high enantiomeric excess are described, which with laser-based instrumentation may give accuracies of better than +/- 1% with sample loadings of 50 micrograms on an achiral column. Applications to the study of enantioselective reactions are also considered, with determination of enantiomeric excess in near-racemates to better than +/- 0.1%.  相似文献   

6.
Junge M  Huegel H  Marriott PJ 《Chirality》2007,19(3):228-234
The chiral separation of amino acids (AA) derivatised with ethyl chloroformate by using comprehensive two-dimensional gas chromatography is reported. A commercially available enantioselective capillary column (Chirasil-l-Val) has been tested as first-dimension column. Two nonenantioselective stationary phases (BPX50 and BP1) with different column lengths were combined with the enantioselective column, which represent chiral/polar and chiral/low-polarity column sets, respectively. These column sets were evaluated to determine the most useful column combination to provide improved separation efficiency of enantioselective AA analysis. Separations of AA mixtures derivatised either as their N-trifluoroacetyl methyl esters or with methyl chloroformate, performed on a chiral/low-polarity column set, are also shown. The method was demonstrated for chiral analysis of AAs in different beer samples. The major AA in the beer samples was proline with amounts ranging from around 65-95% with minor contents of glycine and the l-enantiomers of alanine, valine, leucine, and isoleucine. Small amounts of d-alanine, at about 1, 1.5, and 15% were detected in the three samples.  相似文献   

7.
Prediction of chiral separation for a compound using a chiral selector is an interesting and debatable work. For this purpose, in this study 23 chiral basic drugs with different chemical structures were selected as model solutes and the influence of their chemical structures on the enantioseparation in the presence of maltodextrin (MD) as chiral selector was investigated. For chiral separation, a 100‐mM phosphate buffer solution (pH 3.0) containing 10% (w/v) MD with dextrose equivalent (DE) of 4‐7 as chiral selector at the temperature of 25°C and voltage of 20 kV was used. Under this condition, baseline separation was achieved for nine chiral compounds and partial separation was obtained for another six chiral compounds while no enantioseparation was obtained for the remaining eight compounds. The results showed that the existence of at least two aromatic rings or cycloalkanes and an oxygen or nitrogen atom or –CN group directly bonded to the chiral center are necessary for baseline separation. With the obtained results in this study, chiral separation of a chiral compound can be estimated with MD‐modified capillary electrophoresis before analysis. This prediction will minimize the number of preliminary experiments required to resolve enantiomers and will save time and cost. Chirality 26:620–628, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Treatment of cyanuric chloride with chiral amines or esters of chiral amino acids gave chiral 2,4-dichloro-6-alkylamino-1,3,5-triazines (2-5) in 49-69% yield, which were found useful as coupling reagents. Enantioselective activation and enantioselective aminolysis in the presence of 2-5 was observed.  相似文献   

9.
Liu P  He W  Zhao Y  Wang PA  Sun XL  Li XY  Zhang SY 《Chirality》2008,20(2):75-83
This paper describes an improved access to 1,4-bis (9-O-quininyl) phthalazine [(QN)(2)PHAL], a very useful chiral ligand for catalytic asymmetric dihydroxylation (AD), by using CaH(2) as acid-binding reagent in a high yield under mild conditions. The application of (QN)(2)PHAL to the AD reactions of eight olefins exhibited excellent enantioselectivity and activity with corresponding chiral vicinal diols. Furthermore, a capillary zone electrophoresis method was developed to separate the aforementioned chiral vicinal diols by using of neutral beta-cyclodextrin (beta-CD) as chiral selector and borate as running buffer. High resolution was achieved under the optimal conditions of beta-CD 2.2% (w/v), pH 10, 200 mM borate buffer at 15 kV, and 20 degrees C within 15 min. The relative standard deviations of the corrected peak areas and migration time were less than 3.9% and 1.3%, respectively. In addition, the developed method was successfully applied to the determination of the purity and the enantiomeric excesses value (%ee) of the AD reaction products.  相似文献   

10.
Four new chiral pincer-complexes were prepared based on coupling of BINOL and TADDOL moieties with iodoresorcinol followed by oxidative addition of palladium(0). The X-ray analysis of complex 5a revealed that the BINOL rings form a well-defined chiral pocket around the palladium atom. This chiral environment can be further modified by γ-substitution of the BINOL rings. Preliminary studies for electrophilic allylation of sulfonimine 2 with allylstannane revealed that the presented chiral complexes are promising asymmetric catalysts for preparation of chiral homoallyl amines. The best result was achieved employing catalytic amounts of γ-Me BINOL complex 6 affording homoallyl amine 4 with 59% ee and 74% isolated yield.  相似文献   

11.
Initial results of a comparative survey of commonly used chiral drugs are presented. The survey considered the differences between drugs used in 1982 with those in use in 1991. Two major conclusions were reached: the use of single isomer chiral drugs had increased from 31.1% in 1982 to 34.3% in 1991 and the proportion of synthetic single isomer chiral drugs available in 1991 was considerably greater than in 1982. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Jiao F  Yang W  Wang F  Tian L  Li L  Chen X  Mu K 《Chirality》2012,24(8):661-667
A method of solvent sublation was developed for the enantioseparation of racemic ofloxacin (rac Oflx) and racemic tryptophan (rac Trp). In this method, dibenzoyl-L-tartaric acid (L-DBTA) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) and sodium lauryl sulfate (SDS) were used as chiral coextractants and foamer, respectively. Several important parameters influencing the separation performances, such as pH in aqueous phase, concentrations of rac mixtures, L-DBTA, D2EHPA, and SDS, were investigated. Under the optimal operation conditions, the enantiomeric excess and enantioselectivity were 60.08% and 5.58 for Oflx and 65.09% and 6.31 for Trp, respectively. The yields of D-enantiomer and L-enantiomer were 34.23% and 8.54% for Oflx and 18.59% and 3.93% for Trp, respectively. The results suggest that the enantioselectivities have been enhanced compared with the traditional chiral extraction. This technique is an efficient chiral separation method, with many advantages such as low expenditures of organic solvent, low consumption of chiral extractant, and easy realization of multistage operation.  相似文献   

13.
A fluorescent chiral molecular micelle (FCMM), poly (sodium N-undecanoyl-L-phenylalaninate) (poly-L-SUF), was developed as a chiral selector for enantiomeric recognition and determination of enantiomeric composition of four fluorescent and four nonfluorescent chiral molecules by use of steady-state fluorescence spectroscopy. The influence of FCMM concentration, buffer pH and complexation medium on FCMM-analyte host-guest complexation, and the emission spectral properties of the resulting complexes were investigated. The chiral interactions of the analytes,1,1'-binaphthyl-2,2'-diamine, 1-(9-anthryl)-2,2,2-trifluoroethanol, propranolol, naproxen, chloromethyl menthyl ether (CME), citramalic acid, tartaric acid, and limonene (LIM), in the presence of poly-L-SUF were based on diastereomeric complex formation. The figures of merit obtained from the partial-least-squares regression modeling of the calibration samples suggested good prediction ability for the validation of six of the eight chiral analytes. Better host-guest complexation of the more hydrophobic molecules, CME and LIM, were obtained in methanol/water mixtures, resulting in better predictability of the regression models. Prediction ability of the models was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 1.77 to 15.80% (buffer), 1.26 to 7.95% (25:75 methanol/water), and 1.21 to 4.28% (75:25 methanol/water).  相似文献   

14.
Malathion is a widely used chiral phosphorus insecticide, which has a more toxic chiral metabolite malaoxon. In this work, the enantiomers of malathion and malaoxon were separated by high-performance liquid chromatography-mass/mass (HPLC-MS/MS) with chiral columns using acetonitrile/water or methanol/water as mobile phase, and the chromatographic conditions were optimized. Based on the chiral separation, the chiral residue analysis methods for the enantiomers in soil, fruit, and vegetables were set up. Two pairs of the enantiomers were better separated on CHIRALPAK IC chiral column, and baseline simultaneous separations of malathion and malaoxon enantiomers were achieved with acetonitrile/water (40/60, v/v) as mobile phase at a flow rate of 0.5 mL/min. The elution orders were −/+ for both malathion and malaoxon measured by an optical rotation detector. The chiral residue analysis in soil, fruit, and vegetables was validated by linearity, recovery, precision, limit of detection (LOD), and limit of quantification (LOQ). The LODs and LOQs for the enantiomers of malathion were 1 μg/kg and 3–5 μg/kg and 0.08 μg/kg and 0.20–0.25 μg/kg for malaoxon enantiomers. Good linear calibration curves for each enantiomer in the matrices were obtained within the concentration range of 0.02–12 mg/L. The mean recoveries of the enantiomers of malathion and malaoxon ranged from 82.26% to 109.04%, with RSDs of 0.71–8.63%.The results confirmed that this method was capable of simultaneously determining the residue of malathion and malaoxon in food and environmental matrix on an enantiomeric level.  相似文献   

15.
Polymeric and monomeric V(V) chiral salen complexes‐catalyzed enantioselective ethyl cyanoformylation of aldehydes using ethyl cyanoformate as a source of cyanide was accomplished in the presence of several basic cocatalysts viz., NaOH, KOH, basic Al2O3 and hydrotalcite. Excellent yield (>95%) of chiral ethyl cyanohydrincarbonate with high enantioselectivity up to 94% was achieved in 24–36 h when hydrotalcite was used as an additive. The polymeric catalyst 1 is more reactive than the monomeric catalyst 2 to produce chiral ethyl cyanohydrincarbonate in high optical purity. The chiral polymeric catalyst 1 and cocatalysts hydrotalcite and basic alumina used in this study were recoverable and recyclable several times with retention of its performance. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The feasibility of five potential biocatalytic routes were investigated for the chiral synthesis of key intermediates of an experimental endothelin receptor antagonist. Two asymmetric bioreductions of a ketoester and a chlorinated ketone to their corresponding chiral alcohol yielded very encouraging leads. Pichia delftensis (strain MY 1569) and Rhodotorula piliminae (ATCC 32762) were found to respectively bioreduce the esterified ketone and chlorinated substrate to their corresponding (S) alcohol with enantiomeric excesses > 98% and > 99% respectively. When scaled up in laboratory bioreactors (23-liter scale), both processes produced the desired (S) alcohol intermediate with elevated yield, about 88% and 97% for the ketoester and chloroketone respectively. Investigative chemical syntheses employing the (S) ester alcohol showed that unfavorable racemization occurred during the subsequent synthetic steps. However, the use of the (S) chloroalcohol as chiral synthon for the production of the endothelium receptor antagonist was successfully demonstrated at a preparative scale.  相似文献   

17.
Multiple surface plasmon-polariton (SPP) waves excited at the interface of a homogeneous isotropic metal and a chiral sculptured thin film (STF) impregnated with silver nanoparticles were theoretically assessed for the multiple-SPP-waves-based sensing of a fluid uniformly infiltrating the chiral STF. The Bruggemann homogenization formalism was used in two different modalities to determine the three principal relative permittivity scalars of the silver-nanoparticle-impregnated chiral STF infiltrated uniformly by the fluid. The dynamic sensitivity increased when silver nanoparticles were present, provided their volume fraction did not exceed about 1 %.  相似文献   

18.
Two-phase liquid-liquid extraction experiments were undertaken to study the enantioselective transport of the chiral N-protected α-amino acid derivatives from an aqueous buffer solution into an organic phase employing highly lipophilic carbamoylated quinine as chiral selector and phase transfer carrier, respectively. The chiral separation, derived from enantioselective ion-pair formation and differential solubility in the aqueous and organic phases of diastereomeric associates thus formed has been shown to be primarily dependent on the structure of the selectand, the nature of the organic solvent, the molar ratio of a given chiral selector to selectand in the two phases, and the pH of the aqueous phase. Extracted enantiomers were recovered by back-extraction using a relatively polar acidic medium in which the selector is barely insoluble. Thus, the enantiomeric purity of N-(3,5-dinitrobenzoyl)-leucine exceeded 95% enantiomeric excess with 70% overall yield with a single extraction and back-extraction step. Chirality 9:268–273, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
5,6- and 6,7-Dihydroxy-2-aminotetralin (ADTN), racemic dopamine receptor agonists, were resolved into their enantiomers by a new chiral HPLC assay. The separation was performed on a Crownpack CR column, which contains an 18-crown-6-type chiral crown ether as a chiral selector. The chiral recognition is based on the compiexation of the protonated primary amino group and the oxygen atoms inside the cavity of the crown ether. The amino group is attached to the chiral centre and therefore these compounds could be resolved. Mobile phase was perchloric acid pH 2.0 and the detection was UV at 200 nm. Resolution factors were 3.1 for 5,6-ADTN and 1.1 for 6,7-ADTN resulting in very low limits of quantitation (<0.1%) of the enantiomer present as impurity. Data on the validation of the assay and on the stability of the column are also reported. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号