首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seed dormancy is an adaptive trait in plants. Breaking seed dormancy determines the timing of germination and is, thereby essential for ensuring plant survival and agricultural production. Seed dormancy and the subsequent germination are controlled by both internal cues (mainly hormones) and environmental signals. In the past few years, the roles of plant hormones in regulating seed dormancy and germination have been uncovered. However, we are only beginning to understand how light signaling pathways modulate seed dormancy and interaction with endogenous hormones. In this review, we summarize current views of the molecular mechanisms by which light controls the induction, maintenance and release of seed dormancy, as well as seed germination, by regulating hormone metabolism and signaling pathways.  相似文献   

2.
The seed in the mature and dry state is metabolically inactive (quiescent) and is thus able to withstand extreme environmental conditions, such as drought and cold. Germination commences when the dry seed, shed from its parent plant, takes up water (imbibition) and ends when the root emerges through the seed coat. During seedling establishment, the reserves stored in the seed are metabolized, whereas the subsequent vegetative and reproductive growth is supported by photosynthesis. Here, we describe the functional characterization of the PH-START protein AtAPO1 (Arabidopsis thaliana APOSTART1), the putative homologue of PpAPO1 (Poa pratensis APOSTART1) in Arabidopsis thaliana. By using translational fusion of the AtAPO1 promoter to the uiaD gene and in situ hybridization analyses, we show that AtAPO1 is expressed in mature embryo sacs and developing embryos. The functional analysis of two at-apostart mutant alleles suggests that AtAPO1 is involved in the control of seed germination.  相似文献   

3.
Background and AimsSeed dormancy determines the environmental niche of plants in seasonal environments, and has consequences for plant performance that potentially go far beyond the seed and seedling stages. In this study, we examined the cascading effects of seed dormancy on the expression of subsequent life-history traits and fitness in the annual herb Arabidopsis thaliana.MethodsWe planted seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified the relationship between primary seed dormancy and the expression of subsequent life-history traits and fitness in the RIL population with path analysis. To examine the effects of differences in dormancy on the relative fitness of the two parental genotypes, we planted dormant seeds during the seed dispersal period and non-dormant seeds during the germination period of the local population.Key ResultsIn the RIL population, strong primary dormancy was associated with high seedling survival, but with low adult survival and fecundity, and path analysis indicated that this could be explained by effects on germination timing, rosette size and flowering start. The relationship between primary seed dormancy and germination proportion varied among years, and this was associated with differences in seasonal changes in soil moisture. The planting of dormant and non-dormant seeds indicated that the lower primary dormancy of the local Swedish genotype contributed to its higher germination proportion in two years and to its higher fecundity in one year.ConclusionsOur results show that seed dormancy affects trait expression and fitness components across the life cycle, and suggest that among-year variation in the incidence of drought during the germination period should be considered when predicting the consequences of climatic change for population growth and evolution.  相似文献   

4.
5.
BACKGROUND AND AIMS: Germination and establishment of seeds are complex traits affected by a wide range of internal and external influences. The effects of parental temperature preconditioning and temperature during germination on germination and establishment of Arabidopsis thaliana were examined. METHODS: Seeds from parental plants grown at 14 and at 22 degrees C were screened for germination (protrusion of radicle) and establishment (greening of cotyledons) at three different temperatures (10, 18 and 26 degrees C). Seventy-three accessions from across the entire distribution range of A. thaliana were included. KEY RESULTS: Multifactorial analyses of variances revealed significant differences in the effects of genotypes, preconditioning, temperature treatment, and their interactions on duration of germination and establishment. Reaction norms showed an enormous range of plasticity among the preconditioning and different germination temperatures. Correlations of percentage total germination and establishment after 38 d with the geographical origin of accessions were only significant for 14 degrees C preconditioning but not for 22 degrees C preconditioning. Correlations with temperature and precipitation on the origin of the accessions were mainly found at the lower germination temperatures (10 and 18 degrees C) and were absent at higher germination temperatures (26 degrees C). CONCLUSIONS: Overall, the data show huge variation of germination and establishment among natural accessions of A. thaliana and might serve as a valuable source for further germination and plasticity studies.  相似文献   

6.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

7.
The activities of several gibberellins in stimulating germination of wild-type and GA-deficient gal seeds of Arabidopsis thaliana were compared. Of the six compounds tested GA4 and GA7-isolactone had the highest activity and GA7 and GA9 the lowest; activities of GA1 and GA3 were intermediate. Combined application of pure GAs presented no indications that more than one GA receptor is involved. Four GAs were identified in extracts from wild-type and GA-insensitive gai seeds by combined gas chromatography mass spectrometry: GA1, GA3, GA4 and GA9. Effects of light and chilling on levels of GA1, GA4 and GA9 were studied using deuterated standards. Light increased both GA levels and germination in unchilled wild-type and gai seeds. As a result of irradiation GA levels in gai seeds were 7–10 times as high as in wild-type seeds. In the dark germination was 0%, in the light 14% of gai seeds and 95% of wild-type seeds germinated. A chilling pre-treatment of 7 days at 2°C was required to enhance further the germination of gai seeds in the light. Light did not increase GA levels of chilled seeds of either genotype; levels of GA4 and GA9 of chilled gai seeds, in the light were respectively 7 and 12 times lower than in non-chilled seeds, whereas the latter seeds germinated better. Slightly elevated levels of GA4 were detected in darkness after chilling, but germination capacity was still 0%. These results strengthened the conclusion that GAs are required for germination of A. thaliana seeds, whereby GA4 has intrinsic biological activity. However, it is unlikely that light and chilling stimulate germination primarily by increasing levels of GA. Instead GA sensitivity is a possible alternative.  相似文献   

8.
通过在人工培养箱内模拟环境条件,探讨了不同光照和变温对飞机草种子萌发的影响。结果表明:在有光照状况下,飞机草种子在15℃/10℃~40℃/35℃条件下均能萌发,飞机草种子萌发的最适变温为30℃/25℃,萌发率达47.5%;而黑暗条件下,飞机草种子在15℃/10℃时不能萌发;在20℃/15℃~35℃/30℃范围内,温度越高,飞机草种子萌发高峰的出现时间越早;在15℃/10℃~30℃/25℃范围内,飞机草种子的萌发率随温度的升高而升高,超过30℃/25℃后,萌发率下降,而适当的光照有利于飞机草种子的萌发。飞机草成为入侵种并迅速扩散与其种子萌发对光照和温度的适应性密切相关。  相似文献   

9.
脱落酸和赤霉素调控种子休眠与萌发研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晏  李俊德  李家儒 《生物资源》2020,42(2):157-163
种子的休眠与萌发是高等植物生长发育进程中非常重要的环节,是维系物种繁衍的重要过程。而激素在这一过程中扮演着非常重要的角色。而在这个过程中脱落酸(abscisic acid,ABA)和赤霉素(gibberellin GA)发挥着尤其重要的作用。本文综述了当前对复杂分子网络的理解,这些分子网络涉及脱落酸和赤霉素在调节种子休眠和萌发中的关键作用,其中含AP2结构域的转录因子起着关键作用。  相似文献   

10.
Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.  相似文献   

11.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

12.
Fourteen spermine-resistant mutants of Arabidopsis thaliana (L.) Heynh. have been isolated from EMS-mutagenized M2 seeds by screening for germination seedlings on a medium containing a germination inhibitory concentration of spermine. Two of these mutants have been studied initially. Genetic analysis indicated that the two mutants are allelic and the spermine resistance is due to recessive nuclear mutations at a locus we have designated SPR1. Mutant spr1-1 exhibits large, longitudinally folded-in cauline leaves whereas mutant spr1-2 is characterized by vigorous growth, large longitudinally folded-in cauline leaves, prominent flowers with 4–8 sepals, 6–8 petals, 6 (rarely 7) stamens of equal lengths, and 2–4 carpellary club-shaped pistil. Both mutants are resistant to exogenous spermine but are as sensitive as the wild-type to spermidine and putrescine.  相似文献   

13.
拟南芥活性氧不敏感型突变体的筛选与特性分析   总被引:4,自引:0,他引:4  
采用 EMS化学诱变方法与 H2 O2 氧化胁迫选择 ,以根在重力作用下的弯曲生长为指标 ,筛选得到拟南芥活性氧不敏感型突变体。对突变体杂交后代遗传分析表明 ,突变株对活性氧不敏感性状为隐性单基因突变所致 ;生理生化分析表明突变体对 H2 O2 有很强的抗性 ,表现为气孔开度对 H2 O2 不敏感和 H2 O2 胁迫时较低的膜脂过氧化水平。运用 L SCM技术并结合 H2 O2 荧光探针 H2 DCFDA检测外源 ABA诱导保卫细胞内产生 H2 O2 的情况 ,结果显示突变体体内荧光强度比对照低 ,暗示了突变体体内消除 H2 O2 的能力可能有所提高 ,增强了植株对氧化胁迫的抗性。拟南芥活性氧不敏感突变体的筛选 ,不仅为人们深入研究活性氧在细胞内的作用提供良好的实验材料 ,而且还将大大加深人们对信号转导途径的再认识  相似文献   

14.
In Arabidopsis thaliana, the etr1-2 mutation confers dominant ethylene insensitivity and results in a greater proportion of mature seeds that exhibit dormancy compared with mature seeds of the wild-type. We investigated the impact of the etr1-2 mutation on other plant hormones by analyzing the profiles of four classes of plant hormones and their metabolites by HPLC-ESI/MS/MS in mature seeds of wild-type and etr1-2 plants. Hormone metabolites were analyzed in seeds imbibed immediately under germination conditions, in seeds subjected to a 7-day moist-chilling (stratification) period, and during germination/early post-germinative growth. Higher than wild-type levels of abscisic acid (ABA) appeared to contribute, at least in part, to the greater incidence of dormancy in mature seeds of etr1-2. The lower levels of abscisic acid glucose ester (ABA-GE) in etr1-2 seeds compared with wild-type seeds under germination conditions (with and without moist-chilling treatments) suggest that reduced metabolism of ABA to ABA-GE likely contributed to the accumulation of ABA during germination in the mutant. The mutant seeds exhibited generally higher auxin levels and a large build-up of indole-3-aspartate when placed in germination conditions following moist-chilling. The mutant manifested increased levels of cytokinin glucosides through zeatin-O-glucosylation (Z-O-Glu). The resulting increase in Z-O-Glu was the largest and most consistent change associated with the ETR1 gene mutation. There were more gibberellins (GA) and at higher concentrations in the mutant than in wild-type. Our results suggest that ethylene signaling modulates the metabolism of all the other plant hormone pathways in seeds. Additionally, the hormone profiles of etr1-2 seed during germination suggest a requirement for higher than wild-type levels of GA to promote germination in the absence of a functional ethylene signaling pathway.  相似文献   

15.
Although the influence of temperature, particularly cold, on lipid metabolism is well established, previous studies have focused on long-term responses and have largely ignored the influence of other interacting environmental factors. Here, we present a time-resolved analysis of the early responses of the glycerolipidome of Arabidopsis thaliana plants exposed to various temperatures (4, 21 and 32°C) and light intensities (darkness, 75, 150 and 400 μmol m(-2) s(-1)), including selected combinations. Using a UPLC/MS-based lipidomic platform, we reproducibly measured most glycerolipid species reported for Arabidopsis leaves, including the classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). In addition to known lipids, we have identified previously unobserved compounds, such as 36-C PGs and eukaryotic phospholipids containing 16:3 acyl chains. Occurrence of these lipid species implies the action of new biochemical mechanisms. Exposition of Arabidopsis plants to various light and temperature regimes results in two major effects. The first is the dependence of the saturation level of PC and MGDG pools on light intensity, likely arising from light regulation of de novo fatty acid synthesis. The second concerns an immediate decrease in unsaturated species of PG at high-temperature conditions (32°C), which could mark the first stages of adaptation to heat-stress conditions. Observed changes are discussed in the context of current knowledge, and new hypotheses have been formulated concerning the early stages of the plant response to changing light and temperature conditions.  相似文献   

16.
重金属镉对拟南芥DNA甲基化的影响   总被引:5,自引:0,他引:5  
将拟南芥种子点种于添加有不同浓度CdCl2的培养基中处理2周,移苗时CdCl2的胁迫即解除。低浓度CdCl2促进拟南芥种子的萌发。CdCl2为0.5mg·L^-1时萌发率最高(为97.21%)。随着CdCl2浓度的继续增加,种子萌发率即逐渐下降。幼苗期和抽薹期分别提取叶DNA,采用甲基敏感扩增多态性(MSAP)技术分析其基因组DNA甲基化的结果显示,总的来说,随着CdCl2浓度的增加,甲基化程度增高。  相似文献   

17.
Abstract

In spite of the simplicity of its molecules, the complex effects of benzoic acids on the regulation of plant growth are an increasingly attractive field of research to chemists and biologists. Halide substituted benzoic acids offer an excellent opportunity to explore the effect of electron withdrawing substituents (fluoro-, chloro-, bromo- and iodo-) on the response of plant growth stage. Under normal physiological conditions, benzoic acids are ionized molecules that exhibit low solubility in water. Monoethanolamine, a natural alkanolamine, was used to generate salts of monoethanolamine of halogenated para-substituted benzoic acids, new compounds with biological activity. This study reports on the biological effects of these substances at different concentrations on Arabidopsis thaliana seed germination and early seedling growth. Seed germination at 22°C, in a vertical position, under a photoperiod of 16 h light and 8 h darkness, was variable depending on the concentration of the compounds applied. Final germination percentages were similar for all treatments and control at 0.05 mM and 0.1 mM (exception p-Br BA and p-I MEASPBA). No germination occurred when seeds were treated with more than 0.5 mM. The results also revealed that the primary root length and the number of secondary roots are reduced in a concentration-dependent manner and also in relation to increasing atomic size of the substituents (F < Cl < Br < I). It is concluded that uptake rates of benzoic acid anions by roots decrease with a decrease in hydrophilic character of the anion and with an increase in molecular size.  相似文献   

18.
19.
光照和温度对百合属6种植物种子萌发的影响   总被引:27,自引:1,他引:27  
对不同光照和温度条件对条叶百合(Lilium callosum Sieb.et Zucc.)、大花卷丹[L. leichtlinii Hook.f var.maximowicaii(Regel)Baker]、有斑百合[L.concolor Salisb.var.pulchellum(Fisch.)Regel]、川百合[L.davidii Duchartre)、毛百合(L. dauricum Ker-Gawl.)和东北百合(L.distichum Nakai)种子萌发的影响进行了研究。结果表明:光照对有斑百合、川百合和毛百合种子萌发有明显促进作用,可缩短种子萌发时间,提高种子萌发率。24h光照下种子萌发完全所需天数比12h光照少,种子萌发率以24h光照最佳。避光条件下温度对大花卷丹、有斑百合、毛百合、川百合及东北百合种子萌发率和萌发速度有影响,对条叶百合种子影响最大,其种子萌发最适温度为20℃,5~6d开始萌动,2~3周萌发完全,随着温度的升高或降低其种子萌发率下降。光照条件下,变温对种子萌发影响不明显。子叶留土类型的毛百合种子有二次休眼现象,9000lx光照能代替低温解除二次休眼。经不同前处理的百合种子萌发率和萌发速度不同。  相似文献   

20.
拟南芥铵超敏感突变体amosd和vtc1对外源铵的响应   总被引:1,自引:0,他引:1  
分析了不同外源铵浓度(0、1、5、10、20mmol.L-1)处理下,2个铵超敏感突变体amosd和vtc1对于外源铵处理的响应差异。结果表明,尽管amosd和vtc1都表现为对外源铵超敏感,但二者对外源铵处理浓度的敏感性上存在差异。随着外源铵浓度的增加,vtc1比amosd先表现出铵中毒症状,更高浓度(20mmol·L-1)铵处理时amosd受到的毒害程度表现更加严重,AMOSD遗传位点的缺失容易导致植物出现铵毒害死亡。其次,二者在遭受外源铵胁迫时表现的最敏感部位有所不同,主要的毒害特征上存在差异,amosd在铵胁迫下首先表现在叶片尤其是新叶的发育受阻,而vtc1则主要表现在根部尤其是主根的伸长受阻。通过分区供应实验证明,amosd主要对于地上部供铵处理超敏感,对根部供铵处理不表现超敏感特性;而vtc1则相反,对根部供铵处理超敏感,对地上部供铵不表现超敏感特性。由此可见,amosd和vtc1这2个铵超敏感突变体在拟南芥铵毒害范围和部位上存在较大差异,与vtc1有所不同,amosd是一个叶源铵超敏感型突变体。在农业机械化叶面喷施施肥日益增加和环境铵沉降日益严重的当下,叶源型铵超敏感突变体amosd的获得为揭示植物地上部铵毒害机制提供了一个理想的遗传材料,对系统全面认识植物铵毒害机制,提高作物耐铵性状具有十分重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号