首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of induced metabolic acidosis (48 h of NH4Cl ingestion, BE - 10.6 +/- 1.1) and alkalosis (43 h of NaHCO3- ingestion BE 8.8 +/- 1.6) on arterial and lumber CSF pH, Pco2, and HCO3- and ventilatory responses to CO2 and to hypoxia was assessed in five healthy men. In acidosis lumbar CSF pH rose 0.033 +/- 0.02 (P less than 0.05). In alkalosis CSF pH was unchanged. Ventilatory response lines to CO2 at high O2 were displaced to the left in acidosis (9.0 +/- 1.4 Torr) and to the right in alkalosis (4.5 +/- 1.5 Torr) with no change in slope. The ventilatory response to hypoxia (delta V40) was increased in acidosis (P less than 0.05) and it was decreased in four subjects in alkalosis (P, not significant). We conclude that the altered ventilatory drives of steady-state metabolic imbalance are mediated by peripheral chemoreceptors, and in acidosis the medullary respiratory chemoreceptor drive is decreased.  相似文献   

3.
Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P < 0.05) because of hyperventilation (arterial PCO2 25.6 +/- 2.4 Torr). Urinary pH and urinary bicarbonate excretion increased irrespective of the sodium intake. Sodium excretion increased more during HS than during LS, whereas the increase in potassium excretion was comparable in both groups. Thus the quick onset of bicarbonate excretion within the first hour of hypoxia-induced respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.  相似文献   

4.
The effect of acute cyclooxygenase (CYO) inhibition on the cardiopulmonary adjustments at birth was examined in chronically instrumented, unanesthetized, term lambs before, during, and after cesarean section (spontaneous respiration). One of three infusions was started 20 min before birth: saline control (C, n = 6), indomethacin (I, n = 6), or meclofenamate (M, n = 3). The stable metabolite of prostacyclin, plasma 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha, aorta), was measured by radioimmunoassay as an index of CYO activity. Indomethacin blocked the rise of 6-keto-PGF1 alpha observed in control lambs after birth and indomethacin-treated lambs exhibited an attenuation of the postnatal decrease in mean pulmonary arterial pressure. Pulmonary arterial pressure (Ppa) was 53 +/- 2 and 47 +/- 2 Torr (mean +/- SE) at 15 min and 40 +/- 3 and 34 +/- 2 Torr at 120 min in I and C groups, respectively. There were no serial or group differences in cardiac output and cardiac right to left shunt (indicator dilution) from 15 to 120 min after birth. Arterial PO2 (PaO2) was not different between groups: 37 +/- 4 Torr at 15 min and 47 +/- 5 min at 120 min after birth (control lambs). The results for I and M were similar for all measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The maturation of the respiratory sensitivity to CO2 was studied in three groups of anesthetized (ketamine, acepromazine) lambs 2-3, 14-16, and 21-22 days old. The lambs were tracheostomized, vagotomized, paralyzed, and ventilated with 100% O2. Phrenic nerve activity served as the measure of respiration. The lambs were hyperventilated to apneic threshold, and end-tidal PCO2 was raised in 0.5% steps for 5-7 min each to a maximum 7-8% and then decreased in similar steps to apneic threshold. The sinus nerves were cut, and the CO2 test procedure was repeated. Phrenic activity during the last 2 min of every step change was analyzed. The CO2 sensitivity before and after sinus nerve section was determined as change in percent minute phrenic output per Torr change in arterial PCO2 from apneic threshold. Mean apneic thresholds (arterial PCO2) were not significantly different among the groups: 34.8 +/- 2.08, 32.7 +/- 2.08, and 34.7 +/- 2.25 (SE) Torr for 2- to 3-, 14- to 16-, and 21- to 22-day-old lambs, respectively. After sinus denervation, apneic thresholds were raised in all groups [39.9 +/- 2.08, 40.9 +/- 2.08, and 45.3 +/- 2.25 (SE) Torr, respectively] but were not different from each other. CO2 response slopes did not change with age before or after sinus nerve section. We conclude that carotid bodies contribute to the CO2 response during hyperoxia by affecting the apneic threshold but do not affect the steady-state CO2 sensitivity and the central chemoreceptors are functionally mature shortly after birth.  相似文献   

6.
We examined the respiratory effects of a patent ductus arteriosus in 29 premature lambs (131-135 days gestational age) after infiltrating the ductal wall with formaldehyde solution (Formalin) and placing a snare around the ductus to regulate its patency. The lambs were given sheep surfactant, paralyzed, and mechanically ventilated at birth. We first compared 8 lambs with open ductus and 13 lambs with closed ductus during the 12 h after birth. Although lambs with open ductus had greater pulmonary blood flow (301 +/- 36 vs. 188 +/- 11 ml.min-1.kg-1, mean +/- SE, at 12 h of age) and mean pulmonary arterial (44 +/- 3 vs. 33 +/- 2 mmHg) and left ventricular end-diastolic (6 +/- 0.6 vs 4 +/- 0.7 mmHg) pressures, we found no differences in dynamic respiratory compliance (Cdyn = 0.55 +/- 0.07 vs. 0.55 +/- 0.03 ml.cmH2O-1.kg-1), midtidal volume resistance (62 +/- 5 X 10(-3) vs. 62 +/- 7 X 10(-3) cmH2O.ml-1.s), or functional residual capacity (FRC = 27 +/- 3 vs. 26 +/- 2 ml.kg-1). Alveolar-arterial PO2 difference was lower in the lambs with open ductus (238 +/- 65 vs. 362 +/- 37 Torr). Next, we challenged eight lambs with two separate saline infusions (50 ml.kg-1 over 3 min), each given with the ductus alternately closed or open. When the ductus was closed, FRC was unchanged, but Cdyn increased by 18% immediately after the infusion. When the ductus was open, FRC decreased by 16% and Cdyn decreased by 12%. We conclude that the premature lamb is surprisingly resistant to changes in respiratory function from ductal patency during the immediate neonatal period.  相似文献   

7.
The effects of acid-base balance disturbances on pulmonary endothelial angiotensin-converting enzyme (ACE) were studied in anesthetized mechanically ventilated rabbits. Enzyme function was estimated from [3H]benzoyl-Phe-Ala-Pro ([3H]BPAP) utilization under first-order reaction conditions during a single transpulmonary passage and expressed as 1) substrate metabolism (M), 2) Amax/Km (Amax being equal to the product of enzyme mass and the constant of product formation), and 3) (Amax/Km)/100 ml blood flow. When respiratory acidosis/alkalosis was produced by altering respiratory rate at constant airway pressure, substrate (BPAP) utilization varied proportionally to arterial pH and inversely proportionally to arterial PCO2 (PaCO2) (P less than 0.05). Percent BPAP metabolism (%M) ranged from 92 +/- 3 (respiratory alkalosis) to 85 +/- 3 (normal), 82 +/- 3 (respiratory acidosis), and 78 +/- 2% (severe respiratory acidosis). Amax/Km similarly decreased from 899 +/- 129 to 825 +/- 143, 601 +/- 74, and 450 +/- 34 ml/min, respectively, and (Amax/Km)/100 ml blood flow was reduced from 176 +/- 26 to 131 +/- 22, 111 +/- 12, and 97 +/- 5, respectively. However, when respiratory acidosis/alkalosis was produced by altering both respiratory rate and airway pressure, no changes were observed in either %M, Amax/Km or (Amax/Km)/100 ml blood flow. Similarly metabolic alkalosis or acidosis did not alter M, Amax/Km or (Amax/Km)/100 ml blood flow. These results indicate that pulmonary endothelial ACE function can be affected by acid-base disturbances, probably indirectly through changes in perfused microvascular surface area.  相似文献   

8.
Pulmonary vascular responsiveness in cold-exposed calves   总被引:1,自引:0,他引:1  
The pulmonary vascular responses to acute hypoxia and to infusions of histamine and 5-hydroxytryptamine (5-HT) were recorded in unanesthetized standing bull calves under neutral (16-18 degrees C) and cold (3-5 degrees C) temperature conditions. Cold exposure alone resulted in a significant increase in pulmonary arterial wedge pressure from 10.2 +/- 3.5 to 15.9 +/- 4.9 Torr (1 Torr = 133.322 Pa). Resistance to blood flow between the pulmonary wedge and the left atrium significantly increased from 0.50 +/- 0.51 to 1.21 +/- 0.78 mmHg . L-1 . min-1 (1 mmHg = 133.322 Pa) with cold exposure. This apparent pulmonary venoconstrictor response to cold exposure was further evaluated to determine if hypoxia, histamine, or 5-HT responsiveness was altered by cold exposure. Twelve minutes of hypoxia increased pulmonary arterial and systemic arterial pressures, heart rate, and respiratory rate similarly in cold and neutral temperatures. Cold exposure did not alter the dose-related reductions of systemic arterial and pulmonary arterial pressures in response to histamine. Similarly, the decreases in systemic arterial pressure and heart rate and increases in pulmonary arterial and left atrial pressures in response to 5-HT were not significantly different in cold and neutral conditions. It was concluded that acute, mild cold exposure results in an increase in resistance to blood flow in the pulmonary venous circulation without a general increase in pulmonary vascular reactivity, as measured by responses to hypoxia, histamine, and 5-HT.  相似文献   

9.
We previously demonstrated that, in awake goats, 6 h of hypoxic carotid body perfusion during systemic normoxia produced time-dependent hyperventilation that is typical of ventilatory acclimatization to hypoxia (VAH). The hypocapnic alkalosis that occurred could have produced VAH by inducing cerebral vasoconstriction and brain lactic acidosis even though systemic arterial normoxia was maintained. In the present study we tested the hypothesis that hypocapnic alkalosis is a necessary component of VAH. Goats were prepared so that one carotid body could be perfused, from an extracorporeal circuit, with blood in which gas tensions could be controlled independently from the blood perfusing the systemic arterial system, including the brain. Using this preparation we carried out 4 h of hypoxic carotid body perfusion while maintaining systemic arterial (and brain) normoxia in awake goats. Expired minute ventilation (VE) was measured while CO2 was added to inspired air to maintain normocapnia. Carotid body PCO2 and PO2 were maintained near 40 Torr during the 4-h carotid body perfusion. Control mean VE was 8.65 +/- 0.48 l/min (mean +/- SE). With acute carotid body hypoxia (30 min) VE increased to 21.73 +/- 2.02 l/min (P less than 0.05); over the ensuing 3.5 h of carotid body hypoxia, VE progressively increased to 39.14 +/- 4.14 l/min (P less than 0.05). These data indicate that neither cerebral hypoxia nor hypocapnic alkalosis are required to produce VAH. After termination of the 4-h carotid body stimulation, hyperventilation was not maintained in these studies, i.e., there was no deacclimatization. This suggests that acclimatization and deacclimatization are produced by different mechanisms.  相似文献   

10.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

11.
Periodic breathing is commonly observed in chronic heart failure (CHF) when pulmonary capillary wedge pressure is abnormally high and there is usually concomitant tachypneic hyperventilation. We hypothesized that acute pulmonary hypertension at pressures encountered in CHF and involving all of the lungs and pulmonary vessels would predispose to apnea/unstable breathing during sleep. We tested this in a chronically instrumented, unanesthetized dog model during non-rapid eye movement (NREM) sleep. Pulmonary hypertension was created by partial occlusion of the left atrium by means of an implanted balloon catheter in the atrial lumen. Raising mean left atrial pressure by 5.7 +/- 1.1 Torr resulted immediately in tachypneic hyperventilation [breathing frequency increased significantly from 13.8 to 19.9 breaths/min; end-tidal P(CO2) (P(ET(CO2))) fell significantly from 38.5 to 35.9 Torr]. This tachypneic hyperventilation was present during wakefulness, NREM sleep, and rapid eye movement sleep. In NREM sleep, this increase in left atrial pressure increased the gain of the ventilatory response to CO2 below eupnea (1.3 to 2.2 l.min(-1).Torr(-1)) and thereby narrowed the CO2 reserve [P(ET(CO2)) (apneic threshold) - P(ET(CO2)) (eupnea)], despite the decreased plant gain resulting from the hyperventilation. We conclude that acute pulmonary hypertension during sleep results in a narrowed CO2 reserve and thus predisposes toward apnea/unstable breathing and may, therefore, contribute to the breathing instability observed in CHF.  相似文献   

12.
We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30-90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4-8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2-4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30-45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4-8 min) exercise (P less than 0.1). In the chronic (1-2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.  相似文献   

13.
The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6-7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2-69-74% N2-5-10% CO2) and hypoxic (90-95% N2-5-10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.  相似文献   

14.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

15.
The H2 clearance technique was used to determine the blood flow of the postulated respiratory chemosensitive areas near the ventrolateral surface of the medulla. In 12 pentobarbital sodium-anesthetized cats, flow (mean +/- SD) was measured from 25-micron Teflon-coated platinum wire electrodes implanted to a depth of 0.3-0.7 mm. Flow (in ml X min-1 X 100 g-1, n = 35) was 52.8 +/- 28.5 in hypocapnia [arterial CO2 partial pressure (PaCO2) = 21.8 +/- 1.6 Torr], 57.8 +/- 27.5 in normocapnia (PaCO2 = 31.9 +/- 2.2 Torr), and 75.0 +/- 31.7 in hypercapnia (PaCO2 = 44.5 +/- 3.0 Torr). Flow determined from 15 electrodes in adjacent pyramidal tracts (white matter) was less at all levels of CO2; 22.9 +/- 12.3 in hypocapnia, 29.1 +/- 15.9 in normocapnia, and 33.9 +/- 13.9 in hypercapnia. In hypoxia [arterial O2 partial pressure (PaO2) = 39.9 +/- 6.3 Torr] ventrolateral surface flow rose to 87.9 +/- 47.6, and adjacent white matter flow was 35.8 +/- 15.6. These results indicate that flow in the postulated central chemoreceptor areas exceeds that of white matter and is sensitive to variations in PaCO2 and PaO2.  相似文献   

16.
This study tested the hypothesis that passive heat stress alters cerebrovascular responsiveness to steady-state changes in end-tidal CO(2) (Pet(CO(2))). Nine healthy subjects (4 men and 5 women), each dressed in a water-perfused suit, underwent normoxic hypocapnic hyperventilation (decrease Pet(CO(2)) approximately 20 Torr) and normoxic hypercapnic (increase in Pet(CO(2)) approximately 9 Torr) challenges under normothermic and passive heat stress conditions. The slope of the relationship between calculated cerebrovascular conductance (CBVC; middle cerebral artery blood velocity/mean arterial blood pressure) and Pet(CO(2)) was used to evaluate cerebrovascular CO(2) responsiveness. Passive heat stress increased core temperature (1.1 +/- 0.2 degrees C, P < 0.001) and reduced middle cerebral artery blood velocity by 8 +/- 8 cm/s (P = 0.01), reduced CBVC by 0.09 +/- 0.09 CBVC units (P = 0.02), and decreased Pet(CO(2)) by 3 +/- 4 Torr (P = 0.07), while mean arterial blood pressure was well maintained (P = 0.36). The slope of the CBVC-Pet(CO(2)) relationship to the hypocapnic challenge was not different between normothermia and heat stress conditions (0.009 +/- 0.006 vs. 0.009 +/- 0.004 CBVC units/Torr, P = 0.63). Similarly, in response to the hypercapnic challenge, the slope of the CBVC-Pet(CO(2)) relationship was not different between normothermia and heat stress conditions (0.028 +/- 0.020 vs. 0.023 +/- 0.008 CBVC units/Torr, P = 0.31). These results indicate that cerebrovascular CO(2) responsiveness, to the prescribed steady-state changes in Pet(CO(2)), is unchanged during passive heat stress.  相似文献   

17.
During galloping, many animals display 1:1 coupling of breaths and strides. Locomotor respiratory coupling (LRC) may limit respiratory evaporative heat loss (REHL) by constraining respiratory frequency (f). Five sheep were exercised twice each, according to a five-step protocol: 5 min at the walk, 5 min at the trot (trot1), 10 min at the gallop, 5 min at the trot (trot2), and 5 min at the walk. Rectal temperature (T(re)), stride frequency, f, REHL, and arterial CO(2) tension and pH were measured at each step. Tidal volume (VT) was calculated. LRC was observed only during galloping. The coupling ratio remained at 1:1 while VT increased continuously during galloping, causing REHL to increase from 2.9 +/- 0.2 (SE) W/kg at the end of trot1 to a peak of 5.3 +/- 0.3 W/kg. T(re) rose from 39.0 +/- 0.1 degrees C preexercise to 40.2 +/- 0.2 degrees C at the end of galloping. At the gallop-trot2 transition, VT fell and f rose, despite a continued rise in T(re). Arterial CO(2) tension fell from 36.5 +/- 1.1 Torr preexercise to 31.8 +/- 1.4 Torr by the end of trot1 and then further to 21.5 +/- 1.2 Torr by the end of galloping, resulting in alkalosis. In conclusion, LRC did not prevent increases in REHL in sheep because VT increased. The increased VT caused hypocapnia and presumably elevated the cost of breathing.  相似文献   

18.
Circulating vasoactive substances and hemodynamics were examined in chronically instrumented unanesthetized lambs before, during, and after cesarean section (spontaneous respiration). One of three infusions were started 20 min before birth: saline control (n = 10), saralasin (n = 5), or captopril (n = 6). Control lambs exhibited peak (means +/- SE) increases above fetal base line at 5 min after birth in plasma renin activity (5.0 +/- 1.1 to 11.0 +/- 3.4 ng.ml-1.h-1), angiotensin II (ANG II, 37 +/- 6 to 141 +/- 45 pg/ml) and total catecholamines (318 +/- 35 to 3,821 +/- 580 pg/ml). Mean systemic arterial pressure (Psa) and arterial O2 partial pressure (PaO2) increased more rapidly and to a greater extent by 1 h after birth in control lambs (Psa, 65 +/- 1 Torr; PaO2, 45 +/- 3 Torr) compared with the captopril group (Psa, 53 +/- 2 Torr; PaO2, 31 +/- 4 Torr) and the saralasin group (Psa, 56 +/- 2 Torr; PaO2, 27 +/- 3 Torr). Intravenous infusions of ANG II in control lambs, 2 h after birth resulted in a preferential systemic vs. pulmonary pressor response. The results demonstrate that at birth ANG II formation fosters the postnatal rise in Psa and PaO2, and high levels of circulating catecholamines may support postnatal cardiac output and Psa.  相似文献   

19.
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347 (6,100 m), and 282/240 Torr (7,620/8,840 m). Resting PAP and pulmonary vascular resistance (PVR) increased from sea level to maximal values at PB 282 Torr from 15 +/- 0.9 to 34 +/- 3.0 mmHg and from 1.2 +/- 0.1 to 4.3 +/- 0.3 mmHg.l-1 X min, respectively. During near maximal exercise PAP increased from 33 +/- 1 mmHg at sea level to 54 +/- 2 mmHg at PB 282 Torr. Right atrial and wedge pressures were not increased with altitude. Acute 100% O2 breathing lowered cardiac output and PAP but not PVR. Systemic arterial pressure and resistance did not rise with altitude but did increase with O2 breathing, indicating systemic control differed from the lung circulation. We concluded that severe chronic hypoxia caused elevated pulmonary resistance not accompanied by right heart failure nor immediately reversed by O2 breathing.  相似文献   

20.
We studied 10 male subjects who were administered chlormadinone acetate (CMA), a potent synthetic progesterone, to clarify the physiological basis of its respiratory effects. Arterial blood gas tension, resting ventilation, and respiratory drive assessed by ventilatory and occlusion pressure response to CO2 with and without inspiratory flow-resistive loading were measured before and 4 wk after CMA administration. In all subjects, arterial PCO2 decreased significantly by 5.7 +/- 0.6 (SE) Torr with an increase in minute ventilation by 1.8 +/- 0.6 l X min-1, whereas no significant changes were seen in O2 uptake. During unloaded conditions, both slopes of occlusion pressure and ventilatory response to CO2 increased, being statistically significant in the former but showing nonsignificant trends in the latter. Furthermore, inspiratory flow-resistive loading (16 cmH2O X l(-1) X s) increased both slopes more markedly after CMA. The magnitudes of load compensation, assessed by the ratio of loaded to unloaded slope of the occlusion pressure response curve, were increased significantly. We concluded CMA is a potent respiratory stimulant that increases the CO2 chemosensitivity and neuromechanical drives in the load-compensation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号