首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the seeds of Vicia sativa, a novel mitogenic lectin was isolated. Purification was carried out by affinity chromatography on Sephadex G-100. The tetrameric lectin is a glycoprotein with a molecular weight of Mr 40 000; it consists of two large beta-subunits (Mr 14 000) and two small alpha-subunits (Mr 6000). The N-terminal sequence of both subunits and their amino acid compositions were determined. The lectin agglutinates human erythrocytes, preferring group B, and erythrocytes from rabbits and horses; no agglutination takes place with sheep erythrocytes. Agglutination is inhibited by mono-, di- and tri-saccharides with the configuration of glucose at the free 4-hydroxyl group. The lectin stimulates mitosis in lymphocytes of mice. From the seeds of the same plant, a protein was isolated which binds to the lectin described above. The lectin binder consists of subunits with a molecular weight of 53 500.  相似文献   

2.
3.
The isolation of a rat alveolar macrophage lectin   总被引:3,自引:0,他引:3  
A lectin in rat alveolar macrophage membranes with a high affinity for binding ligands containing L-fucose and N-acetyl-D-glucosamine has been isolated by affinity chromatography on Fuc-BSA-Sepharose (where Fuc is fucosyl and BSA is bovine serum albumin). The lectin was extracted from rat lung homogenates with Triton X-100, absorbed from the extract onto Fuc-BSA-Sepharose in the presence of Ca2+ and eluted by removal of Ca2+. After a second adsorption to and elution from Fuc-BSA-Sepharose, three protein species were detected electrophoretically in fractions that bind Fuc-BSA. One, which was the mannose/N-acetylglucosamine lectin (Mr = 32,000) found earlier in hepatocytes, was removed by adsorption on anti-lectin IgG-Sepharose. Another (Mr = 46,000) was removed by adsorption to Fuc-BSA-Sepharose and elution with galactose. The remaining lectin (Mr = 180,000) bound fucose and N-acetylglucosamine but not galactose. Binding was maximal between pH 6.5 and 9.0 and dependent on Ca2+. Immunocytological analysis with rabbit anti-lectin IgG and fluorescein-labeled goat anti-rabbit IgG revealed the lectin to be in rat alveolar macrophages and nonparenchymal cells of liver. Thus, the lectin appears to be present in macrophages and is likely involved in receptor-mediated endocytosis. It is distinctly different structurally from the hepatocyte lectin with a similar ligand-binding specificity.  相似文献   

4.
A new lectin has been isolated from the coral Gerardia savaglia by affinity chromatography, using locust gum as an absorbent, and D-mannose as eluant. Final purification was achieved by Bio-Gel P300 gel filtration. The agglutinin is a protein composed of two polypeptide chains with a Mr of 14800; the two subunits are not linked by disulfide bond(s). The isoelectric point is 4.8, the amino acid composition is rich in the acidic amino acids aspartic acid and glutamic acid. The absorption maximum for the protein was at 276 nm; with a molar absorption coefficient of 1.27 X 10(5) M-1 cm-1. The lectin precipitated erythrocytes from humans (A, B and O), sheep, rabbit and carp with a titer between 2(5) and 10(10); the affinity constant for lectin binding to sheep red blood cells was 2.8 X 10(8) M-1 and the number of binding sites, 3.2 X 10(5)/cell. Ca2+ ions are required for full activity; the pH optimum lies in the range between 6 and 11. Inhibition experiments revealed that the lectin is specific for D-mannose. The lectin is mitogenic only for those spleen lymphocytes from mice which had been activated by lipopolysaccharide. An interesting feature of this lectin is its ability to bind to glycoproteins present in nuclei from CV-1 monkey kidney cells. The fluorescein-isothiocyanate-labelled lectin reacted with six polypeptides in the nuclear envelope from rat liver (Mr 190,000, 115,000, 80,000, 62,000, 56,000 and 42,000) and with two polypeptides in the nuclear matrix or pore complex lamina fraction (Mr 190,000 and 62,000). The lectin inhibited the nuclear envelope mRNA translocation system in vitro. It is suggested that this effect is due to an interaction of the lectin with the nuclear glycoproteins gp190 and/or gp62.  相似文献   

5.
The hemagglutinins from the spawn of the water snail Biomphalaria glabrata were isolated by affinity chromatography on hog gastric mucin coupled to Sepharose 4B. The N-acetyl-D-glucosamine eluate (0.1 M) was fractionated further on Bio-Gel P-300, yielding two fractions. Fraction 1 had an Mr of 350 000 and displayed one band in immunoelectrophoresis, but was heterogeneous in discontinuous electrophoresis. It agglutinated human red blood cells with A1 and B specificity at concentrations of 12 and 72 micrograms nitrogen/ml, respectively. Fraction 2 had an Mr on gel filtration of 67 000 and was homogeneous in immuno- and polyacrylamide electrophoresis, and in isoelectrofocusing. It is composed of three subunits with Mr of 17 000 and one smaller subunit of 15 000. This fraction (lectin I) is a glycoprotein containing 6% hexoses and 2.5% hexosamines. For minimal agglutination of human A1 and B red blood cells 2.4 and 72.0 micrograms nitrogen/ml, respectively, of lectin I were required. O red blood cells were not agglutinated. Lectin I precipitated well with a human blood group substance of A1 specificity, moderately with a B- and poorly with an H-substance. Precipitin-inhibition studies revealed that among other sugars N-acetylneuraminic acid was the most potent inhibitor. Immunofluorescence studies confirmed the good interaction of lectin I with receptors of A1 and B erythrocytes and the failure of lectin I to attach to O-erythrocytes. Since N-acetylneuraminic acid is present on the cell surface of all human erythrocytes, it cannot be the dominant part of the receptor for the B. glabrata lectin I, despite its effectiveness as an inhibitor.  相似文献   

6.
A new D-mannose/D-glucose-specific lectin (B-SJA-II) was isolated from the bark of the Japanese pagoda tree, Sophora japonica. B-SJA-II was separated from a well known D-galactose/N-acetyl-D-galactosamine-specific lectin (B-SJA-I) by affinity chromatography on lactamyl-Sepharose, then purified by affinity chromatography on maltamyl-Sepharose. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B-SJA-II gave four bands: subunit a-1 (Mr = 19,400), a-2 (Mr = 18,200), b-1 (Mr = 15,000), and b-2 (Mr = 13,200). Carbohydrate analysis and binding study with horseradish peroxidase-labeled lectins on the bands electroblotted onto polyvinylidene difluoride membrane showed that the three subunits other than b-2 have N-linked oligosaccharides typical of plant glycoproteins. The binding assay with horseradish peroxidase-glycoproteins revealed that all the subunits can bind sugar specifically with fetuin and asialofetuin. Furthermore, B-SJA-II aggregated to form precipitates in the absence of a specific sugar and became soluble upon addition of the specific sugar. The results indicate that each subunit has a sugar-binding site for the mannosyl core of N-linked oligosaccharide chains and recognizes each other sugar specifically to form aggregates. According to the N-terminal amino acid sequences obtained, the subunits are classified into two groups. The first group (a-1 and a-2) has an N-terminal sequence 50% identical with that of other S. japonica lectins (Hankins, C. N., Kindinger, J. I., and Shannon, L. M. (1988) Plant Physiol. 86, 67-70) and the amino acid sequence initiating at position 123 of concanavalin A (Cunningham, B. (1975) J. Biol. Chem. 250, 1503-1512), while the N-terminal sequence of the second group (b-1 and b-2) is homologous to that of concanavalin A, but completely different from that of the first group.  相似文献   

7.
A glucose/mannose lectin was purified by affinity chromatography from Pisum arvense seeds (PAL) and the 50 kDa molecular mass in solution determined by size exclusion chromatography. SDS-PAGE and electrospray ionization mass spectrometry showed two distinct polypeptide chains: alpha (Mr. 5591 Da) and beta (19986 Da). The lectin was extensively characterized in terms of its biochemical and biological aspects. The amino acid sequence was established by Edman degradation of overlapping peptides. PAL in solution behaves as a dimer and has its monomeric structure formed by two distinct polypeptide chains named alpha (Mr. 5591 Da) and beta (19986 Da) by Electrospray ionization (ESI) mass spectrometry. PAL possesses identical amino acid sequences to that of pea seed lectin but undoubtedly does not exhibit sequence heterogeneity. It is discussed that P. arvense should be considered as a synonym of P. sativum. Furthermore, like pea lectin, PAL discriminates biantennary fucosylated glycan, determined by surface plasmon resonance.  相似文献   

8.
Seeds of the greater celandine (Chelidonium majus L.) contain a lectin which could be isolated using a combination of affinity chromatography on chitin and ion exchange chromatography on sulphopropyl-Sephadex. The purified lectin was partially characterized with respect to its biochemical and physicochemical properties. It is a small dimeric protein composed of two different subunits of Mr 9,500 and 11,500, respectively. Its amino acid composition is typified by high contents of glycine and cysteine. No covalently bound carbohydrate could be detected. Hapten inhibition experiments indicated that the lectin exhibits specificity towards oligomers of N-acetylglucosamine, the potency of inhibition increasing with chain length up to four residues. The greater celandine lectin is the first lectin to be isolated from a species belonging to the plant family Papaveraceae (poppy family). Although it represents a new type of plant lectin, resemblances to phytohemaglutinins from diverse taxonomic origin are obvious.  相似文献   

9.
Three lactose-inhibited lectins from the venoms of the snakes Agkistrodon contortrix contortrix (southern copperhead), Ancistrodon piscivorous leukostoma (western cottonmouth moccasin) and Crotalus atrox (western diamondback rattlesnake) have been isolated and newly characterized. The three lectins are similar to thrombolectin, a lectin isolated from the venom of Bothrops atrox (fer-de-lance) (Gartner, Stocker & Williams, 1980), with regard to sugar specificity, Mr, Ca2+ requirements and sensitivity to reducing agents. Each lectin is a dimer (Mr 28 000) consisting of monomers (Mr 14 000) indistinguishable on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Haemagglutination activity is dependent on the presence of Ca2+ and is inhibited by reducing agents. The lectins are not identical and can be distinguished on the basis of relative affinities for inhibiting sugars, isoelectric points and immunoprecipitation assays using anti-(cottonmouth lectin) serum.  相似文献   

10.
An L-rhamnose-binding isolectin named STL3 (subunit Mr, 21.5 k) was isolated from eggs of the steelhead trout (Oncorhynchus mykiss) in addition to STL1 (subunit Mr, 31.4 k) and STL2 (subunit Mr, 21.3 k) that had been already isolated. STLs were composed of non-covalently linked subunits. The primary structures of STL1 and STL3 were analyzed by the combined use of protein sequencing and cDNA sequencing. A cDNA encoding STL2, of which the protein sequence had been previously studied, was also analyzed. The STL1 subunit (289 amino acid residues) had different structural properties compared to those of the STL2 subunit (195 amino acid residues) and the STL3 subunit (195 amino acid residues); e.g., the number of repeated domain (three for STL1, and two for STL2 and STL3), although all of them were composed of tandemly repeated homologous domains (40 to 53% identities).

The lectin levels in various tissues and during the embryonic development showed that STL1 had different distribution and expression profiles from those of STL2 and STL3. Although STL1 could be detected in several tissues and serum of both male and female steelhead trout, STL2 and STL3 were only abundant in the ovary. STL2 and STL3 levels dramatically decreased just after hatching, however, the STL1 level increased temporarily. These results indicate that the multiple lectins from eggs of the steelhead trout form a novel rhamnose-binding lectin family with different structures and tissue distribution to share distinct functions in eggs.  相似文献   

11.
This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.  相似文献   

12.
An L-rhamnose-binding isolectin named STL3 (subunit Mr, 21.5 k) was isolated from eggs of the steelhead trout (Oncorhynchus mykiss) in addition to STL1 (subunit Mr, 31.4 k) and STL2 (subunit Mr, 21.3 k) that had been already isolated. STLs were composed of noncovalently linked subunits. The primary structures of STL1 and STL3 were analyzed by the combined use of protein sequencing and cDNA sequencing. A cDNA encoding STL2, of which the protein sequence had been previously studied, was also analyzed. The STL1 subunit (289 amino acid residues) had different structural properties compared to those of the STL2 subunit (195 amino acid residues) and the STL3 subunit (195 amino acid residues); e.g., the number of repeated domain (three for STL1, and two for STL2 and STL3), although all of them were composed of tandemly repeated homologous domains (40 to 53% identities). The lectin levels in various tissues and during the embryonic development showed that STL1 had different distribution and expression profiles from those of STL2 and STL3. Although STL1 could be detected in several tissues and serum of both male and female steelhead trout, STL2 and STL3 were only abundant in the ovary. STL2 and STL3 levels dramatically decreased just after hatching, however, the STL1 level increased temporarily. These results indicate that the multiple lectins from eggs of the steelhead trout form a novel rhamnose-binding lectin family with different structures and tissue distribution to share distinct functions in eggs.  相似文献   

13.
A second lectin (SNA-II) has been isolated from elderberry (Sambucus nigra L.) bark by affinity chromatography on immobilized asialo-glycophorin. This lectin is a blood group nonspecific glycoprotein containing 7.8% carbohydrate and which is rich in asparagine/aspartic acid, glutamine/glutamic acid, glycine, valine, and leucine. Gel filtration on Superose 12 gave a single symmetrical peak corresponding to Mr, 51,000; SDS-acrylamide electrophoresis gave a single polypeptide, Mr, 30,000. Hence SNA-II appears to be a homodimer. The lectin is a Gal/GalNAc-specific lectin which is precipitated by glycoproteins containing GalNAc-terminated oligosaccharide chains (e.g., asialo-ovine submaxillary and hog gastric mucins), and by glycoproteins and polysaccharides having multiple terminal nonreducing D-galactosyl groups as occur in asialoglycophorin, asialo-laminin and Type 14 pneumococcal polysaccharide. The carbohydrate binding specificity of SNA-II was studied by sugar hapten inhibition of the asialo-glycophorin precipitation reaction. The lectin's binding site appears to be most complementary to Gal-NAc linked alpha to the C-2, C-3, or C-6 hydroxyl group of galactose. These disaccharide units are approximately 100 times more potent than melibiose, 60 times more potent than N-acetyllactosamine, and 30 times more potent than lactose. Interestingly, the blood group A-active trisaccharide containing an L-fucosyl group linked alpha 1-2 to galactose was 10-fold poorer as an inhibitor than the parent oligosaccharide (GalNAc alpha 1-3Gal), suggesting steric hindrance to binding by the alpha-L-fucosyl group; this explains the failure of the lectin to exhibit blood group A specificity.  相似文献   

14.
A lectin was isolated from the venom of scorpion Buthus occitanus sp. by means of Sephadex G-50 gel filtration and CM-cellulose ion exchange chromatography. The homogeneous lectin preparation consisted of homodimeric molecules with a subunit Mr of 9.3 kDa. Glycine, alanine, and serine dominated in the lectin amino acid composition. The lectin was a glycoprotein containing 20% carbohydrates (predominantly mannose and glucose). Trypsin-treated murine erythrocytes agglutinated at the lectin concentration of 32 micrograms/ml. Hemagglutination was inhibited by carbohydrates (L-fucose > D-glucose > L-rhamnose > D-xylose). The lectin revealed no phospholipase or hyaluronidase, nor toxic activity.  相似文献   

15.
用亲和层析法纯化了棕尾别麻蝇幼虫和蛹血淋巴凝集素。以兔红细胞吸附幼虫血淋巴凝集素为抗原制备的抗体、球球蛋白和甲状腺蛋白等三种亲和层析吸附剂纯化得到的幼虫凝集素是相同的,其分子量73kD左右。用甲状腺球蛋白为亲和配基纯化的蛹血淋巴凝集素由二种亚基组成,其分子量分别为30和32kD。幼虫和蛹血淋巴凝集素活性的抑制糖明显不同:乳糖、岩藻糖和N-乙酰半乳糖胺对幼虫血淋巴凝集素活性有抑制作用;而甘露糖胺、半乳糖胺和葡萄糖胺则对蛹血淋巴集素有一定抑制。而且,用兔红细胞吸附幼虫血淋巴凝集素为抗原制备的抗血清对蛹的凝集素活性无交叉反应,表明这两种凝集素是不相同的。虽然本文所纯化的麻蝇蛹血淋巴凝集素的分子量和Komano等报道的麻蝇蛹以及幼虫体壁 伤害诱导的凝集素SPL相同,但其糖的抑制特性有明显差异。  相似文献   

16.
Three lectin fractions were obtained from seeds of the leguminous plant Cytisus scoparius (Scotch broom) by means of affinity chromatography on a N-acetyl-D-galactosamine medium. The first fraction, termed CSIa, was equally well inhibited in haemagglutination experiments by D-galactose and by N-acetyl-D-galactosamine and consisted of a group of isolectins formed from closely related polypeptide chains of approx. Mr 30000. The second fraction, CSIb, was closely related to CSIa in specificity, c.d. and other properties. The third fraction contained a homogeneous lectin, CSII, formed from subunits again of approx. Mr 30000. CSII was 100 times more readily inhibited by N-acetyl-D-galactosamine than by D-galactose. Despite the similarity in specificity, comparative studies of their amino acid composition, c.d. and N-terminal amino acid sequence showed that the CSIa and CSII lectins diverged considerably in structure. The lectin from Cytisus sessilifolius, specific for chitobiose, was also examined and resembled CSIa in composition and c.d. properties.  相似文献   

17.
A full-length cDNA clone for the 13-14 kDa soluble beta-galactoside-binding lectin was isolated from a bovine fibroblast cDNA library. The derived amino acid sequence shows eight differences from a preliminary partial amino acid sequence given previously for the bovine heart lectin. This observation led to a re-examination of the data and correction of the heart lectin protein sequence. Except for a possible polymorphism of the heart lectin at position 57, the fibroblast and heart lectin sequences are considered identical. The epitope recognized by two monoclonal anti-(bovine lectin) antibodies, 36/8 and 9/5, was identified as the tetrapeptide sequence W-G-A/S-E/D by the isolation of several different cDNA clones from a human intestine cDNA library. A similar tetrapeptide is present in all of the soluble beta-galactoside-binding animal lectins sequenced thus far. It is also found in myelin basic protein, which we show is antigenically cross-reactive with the lectin. In myelin basic protein the tetrapeptide is a part of the major domain previously shown to be responsible for the induction of experimental allergic encephalomyelitis.  相似文献   

18.
1. From the latex of two members of the plant family Euphorbiaceae, Hura crepitans L. (sand-box tree) and Euphorbia characias L. (Mediterranean spurge), two lectins were purified by affinity chromatography on acid-treated Sepharose 6B followed by elution with D-galactose. 2. The lectin from E. characias is a single molecular species with Mr 80 000, made up of two identical subunits with Mr 40 000, and is a glycoprotein containing 11% carbohydrate. 3. The lectin from H. creptians appears as a mixture of three isolectins with Mr 140 000, consisting of four different subunits with Mr values 37 500, 35 500, 31 000, and 29 000. 4. Both lectins have haemagglutinating activity, with no specificity for human blood groups. The haemagglutinating activity is inhibited by D-galactose and by galactose-containing oligosaccharides. 5. The lectin from H. crepitans is mitogenic to human T-, but not to B-, lymphocytes. The latex of E. characias is mitogenic to T- and, to a lesser extent, to B-, lymphocytes, but the purified E. characias lectin has no mitogenic activity. 6. The lectin from H. crepitans, but not that from E. characias, inhibits protein synthesis by a rabbit reticulocyte lysate.  相似文献   

19.
Purification and saccharide-binding characteristics of a rice lectin   总被引:1,自引:0,他引:1  
A lectin was purified from rice flour by aqueous extraction followed by precipitation by ammonium sulfate and affinity chromatography on p-aminobenzyl 2-acetamido-2-deoxy-1-thio-beta-D-glucoside-succinyl-aminohexylaminyl -Sepharose 4B. The molecular weight of the lectin is approximately 36,000, as determined by sedimentation-equilibrium analysis. It is a tetramer consisting of two different subunits (Mr = 12,000 +/- 1,000 and 9,000 +/- 1,000). Amino acid analysis indicated that the lectin contains very high proportions of half-cystine, glycine, and glutamic acid. All of the half-cystines are present as -S-S- bridges. The lectin agglutinates human A, B, AB, and O erythrocytes, rabbit erythrocytes, human leukocytes, and is mitogenic to human lymphocytes. The hemagglutinating activity of rice lectin is inhibited by 2-acetamido-2-deoxy-D-glucose, methyl 2-acetamido-2-deoxy-beta-D-glucoside, chitobiose, and chitotriose. N-Acetylneuraminic acid was a noninhibitor, but N-acetylneuramin-(2----3)-lactose showed weak inhibition. The agglutinating activity was also inhibited by various sialoglycoproteins. The immobilized rice-lectin bound glycophorin, alpha 1-acid glycoprotein, and fetuin. Asialoglycophorin, asialofetuin, ovomucoid, and human chorionic gonadotropin were bound only partially to the column.  相似文献   

20.
A lectin with a high affinity for glucose/mannose was isolated from Annona muricata seeds (Annonaceae) by gel filtration chromatography on Sephacryl S-200, ion exchange chromatography on a DEAE SP-5 PW column, and molecular exclusion on a Protein Pak Glass 300 SW column. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) yielded two protein bands of approximately 14 kDa and 22 kDa. However, only one band was seen in native PAGE. The Mr of the lectin estimated by fast-performance liquid chromatography-gel filtration on Superdex 75 was 22 kDa. The lectin was a glycoprotein with 8% carbohydrate (neutral sugar) and required divalent metal cations (Ca2+, Mg2+, and Mn2+) for full activity. Amino acid analysis revealed a large content of Glx, Gly, Phe, and Lys. The lectin agglutinated dog, chicken, horse, goose, and human erythrocytes and inhibited the growth of the fungi Fusarium oxysporum, Fusarium solani, and Colletotrichum musae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号