首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Venezuelan equine encephalitis (VEE) virus was purified and concentrated by chromatography of tissue culture supernatant fluids on diethylaminoethyl-cellulose columns. Stepwise gradient elution studies indicated a broad elution pattern for the virus, with recovery occurring from 0.05 to 0.7 m NaCl. Optical density, infectivity, hemagglutination (HA), and complement fixation (CF) assays indicated that complete recovery of input virus in highly purified form was possible. Single-step elution with 0.7 m tris(hydroxymethyl)aminomethane-succinate-salt buffer resulted in a virus volume decrease of 85% with a concomitant increase in infectivity and antigenicity. Recoveries consistently equaled or exceeded 100% of the input preparations. Additional purification of column-recovered virus was obtained by sedimentation of pooled virus eluates on 50% sucrose cushions. Exposure of borate saline and 0.5% histidine suspensions of purified VEE virus preparations to 6 x 10(6) r of gamma radiation resulted in a loss of infectivity for tissue culture and a loss of lethality for weanling and suckling mice. Inactivation was an exponential function of the dosage. In contrast to infectivity, antigencity (HA and CF) of both saline and histidine preparations was retained after irradiation with doses as high as 6 x 10(6) r. Purified and irradiated VEE virus preparations have been successfully used for routine serological tests and are being evaluated as vaccines.  相似文献   

3.
4.
The within-host diversity of virus populations can be drastically limited during between-host transmission, with primary infection of hosts representing a major constraint to diversity maintenance. However, there is an extreme paucity of quantitative data on the demographic changes experienced by virus populations during primary infection. Here, the multiplicity of cellular infection (MOI) and population bottlenecks were quantified during primary mosquito infection by Venezuelan equine encephalitis virus, an arbovirus causing neurological disease in humans and equids.  相似文献   

5.
When partially purified Eastern equine encephalitis (EEE) virus was centrifuged to equilibrium in CsCl, three virus specific bands were observed. A hemagglutinin was detected at a buoyant density of 1.18 g/cm3. Infectious EEE virus banded in two positions; most of the virus banded at 1.20 g/cm3 and a lesser amount banded at 1.22 to 1.23 g/cm3. Analysis of radioactive profiles of CsCl-fractionated EEE virus labeled with either 32PO4 or 3H-uridine suggested that the hemagglutinin was stripped from the intact EEE virion. The viral origin of the hemagglutinin was verified by inhibition with specific antiserum. Attempts to differentiate between infectious EEE virus of the different buoyant densities showed that the denser particle was neither a virus contaminant nor a density mutant. No evidence was obtained to indicate that the denser particle was an immature form of EEE virus. The two infectious EEE species obtained after CsCl fractionation were indistinguishable antigenically. Furthermore, unfractionated as well as CsCl-fractionated EEE virus sedimented at about 260S in sucrose gradients. These results together with the results of rebanding experiments suggested that the denser EEE species (1.23 g/cm3) results from a salt (CsCl)-induced alteration or breakdown of the EEE virion (1.20 g/cm3), and that it arises as the hemagglutinin is stripped from the surface of the EEE virion.  相似文献   

6.
7.
Enzootic strains of Venezuelan equine encephalitis virus (VEEV) have been isolated from febrile patients in the Peruvian Amazon Basin at low but consistent levels since the early 1990s. Through a clinic-based febrile surveillance program, we detected an outbreak of VEEV infections in Iquitos, Peru, in the first half of 2006. The majority of these patients resided within urban areas of Iquitos, with no report of recent travel outside the city. To characterize the risk factors for VEEV infection within the city, an antibody prevalence study was carried out in a geographically stratified sample of urban areas of Iquitos. Additionally, entomological surveys were conducted to determine if previously incriminated vectors of enzootic VEEV were present within the city. We found that greater than 23% of Iquitos residents carried neutralizing antibodies against VEEV, with significant associations between increased antibody prevalence and age, occupation, mosquito net use, and overnight travel. Furthermore, potential vector mosquitoes were widely distributed across the city. Our results suggest that while VEEV infection is more common in rural areas, transmission also occurs within urban areas of Iquitos, and that further studies are warranted to identify the precise vectors and reservoirs involved in urban VEEV transmission.  相似文献   

8.
9.
Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211–226 and 331–352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11–26, 30–45 and 151–166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein.  相似文献   

10.
11.
An antigen extinction test in hamsters is described. Comparative potency assays with guinea pigs and hamsters showed the latter to be a suitable, advantageous replacement animal in these assays.  相似文献   

12.
Western equine encephalitis virus (WEEV; Togaviridae, Alphavirus) is an enveloped RNA virus that is typically transmitted to vertebrate hosts by infected mosquitoes. WEEV is an important cause of viral encephalitis in humans and horses in the Americas, and infection results in a range of disease, from mild flu-like illnesses to encephalitis, coma, and death. In addition to spreading via mosquito vectors, human WEEV infections can potentially occur directly via aerosol transmission. Due to its aerosol infectivity and virulence, WEEV is thus classified as a biological safety level 3 (BSL-3) agent. Because of its highly infectious nature and containment requirements, it has not been possible to investigate WEEV''s structure or assembly mechanism using standard structural biology techniques. Thus, to image WEEV and other BSL-3 agents, we have constructed a first-of-its-kind BSL-3 cryoelectron microscopy (cryoEM) containment facility. cryoEM images of WEEV were used to determine the first three-dimensional structure of this important human pathogen. The overall organization of WEEV is similar to those of other alphaviruses, consistent with the high sequence similarity among alphavirus structural proteins. Surprisingly, the nucleocapsid of WEEV, a New World virus, is more similar to the Old World alphavirus Sindbis virus than to other New World alphaviruses.The alphaviruses comprise a genus of single-stranded, plus-sense, enveloped RNA viruses that, together with rubella virus, comprise the family Togaviridae. The current classification of the genus Alphavirus includes 29 different species, with multiple subtypes and/or varieties represented within some species (30). These species can be grouped into 8 different complexes based on antigenic and/or genetic similarities (20). Most viruses from the New World are found in the Eastern, Venezuelan, and Western equine encephalitis (EEE, VEE, and WEE, respectively) complexes and cause encephalitis in humans and a variety of domesticated animals. Old World alphaviruses, on the other hand, typically cause only an arthralgia and rash syndrome that is rarely life threatening (5, 24). Among the New World alphaviruses, EEE, VEE, and WEE viruses (EEEV, VEEV, and WEEV, respectively) are potential biological weapons as well as naturally emerging pathogens and are therefore included on the category B Priority Pathogens list of the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/research/pages/cata.aspx).Alphaviruses replicate in the cytoplasm of infected cells after entry via receptor-mediated endocytosis (8). Following internalization, fusion of the viral envelope with the endocytic membrane is mediated by a low-pH-induced conformational change that exposes a fusion peptide found in the E1 envelope glycoprotein. The nucleocapsid then disassembles upon interactions with ribosomes, and an open reading frame (ORF) found in the 5′ two-thirds of the genome is translated. The resultant polyprotein is cleaved into 4 nonstructural proteins (nsP1 to -4) that mediate viral RNA replication, RNA capping, and polyprotein processing (Fig. (Fig.1).1). The structural proteins, including the two envelope glycoproteins E2 and E1 as well as the capsid protein, are encoded in a second ORF that is translated from a subgenomic message often referred to as 26S RNA. Following auto-cleavage of the capsid protein in the cytoplasm, the remaining polyprotein is inserted into the endoplasmic reticulum, where it is cleaved by host cell proteases and then processed through the secretory pathway, where the glycosylation of E2 and E1 occurs. Virion maturation occurs after E2/E1 heterodimers are inserted into the plasma membrane and 240 copies of the capsid protein interact with one copy of the genomic RNA to form nucleocapsids. These nucleocapsids then interact with a cytoplasmic domain of the E2 protein to initiate budding. The mature virion thus includes 240 copies of the capsid protein and 240 E2/E1 heterodimers arranged as trimeric spikes on the surface of the virus (8).Open in a separate windowFIG. 1.Diagram of the alphavirus genome, showing the 5′ cap, 5′ untranslated region, nonstructural polyprotein open reading frame, and major functions of the individual proteins, subgenomic promoter, structural polyprotein open reading frame, 3′ untranslated region, and poly(A) tail.The structures of several different alphaviruses, including Sindbis virus (SINV) (13), Ross River virus (RRV) (3, 35), Semliki Forest virus (SFV), (11), and VEEV (16), have been solved to subnanometer resolution using cryoelectron microscopy (cryoEM), and the X-ray crystallographic structure of the E1 protein from Semliki Forest virus has been determined to atomic resolution (9). The alphaviruses are ca. 700 Å in diameter, with 80 trimeric spikes on their surfaces. By fitting the E1 crystal structure into cryoEM reconstruction maps of whole viruses, the orientations of both envelope proteins within the spikes have been estimated (36). The E1 and E2 proteins are similar in shape, and the E2 proteins extend to the tips of the spikes, where most glycosylation and antibody-binding sites have been mapped (13). The underlying T=4 icosahedral capsid is constructed from regularly ordered capsomers arranged as hexons and pentons. These pentons and hexons consist of capsid protein monomers that apparently represent only the C-terminal half of the protein. Crystal structures of alphavirus capsid proteins also indicate that only the C terminus, including the protease domain, is ordered (25). cryoEM reconstructions of VEEV nucleocapsids isolated from virions have a less ordered structure, with density redistributed from the 3-fold to the 5-fold axis, suggesting that the envelope and/or the envelope glycoproteins constrain and stabilize the nucleocapsid in a compressed structure (15). Additionally, the VEEV nucleocapsids within viruses differ from those of Old World alphaviruses, with a counterclockwise rotation of the pentameric and hexameric capsomers in VEEV (16). Similar differences were observed in the capsid of Aura virus (AURAV), another New World alphavirus (34).In addition to being an important human and equine pathogen, WEEV is one of three alphaviruses that descended from a recombinant ancestor (6, 31). This ancestor derived its nonstructural and capsid protein genes from an ancestral EEEV strain, whereas its envelope glycoprotein genes were provided from an ancestral SINV. The recombination event was apparently followed by compensatory mutations in the cytoplasmic domain of the E2 protein that restored efficient interactions with the EEEV-like capsid protein (6). If this interpretation of the WEEV ancestral recombination event is correct, its nucleocapsids, constructed from capsid proteins derived from the New World EEEV ancestor, would be expected be more similar to those of the New World VEEV than to those of the Old World SINV, RRV, and SFV. To test this hypothesis and to investigate other structural features of interest related to its recombinant history and pathogenicity, we determined the structure of WEEV to a 13-Å resolution using cryoEM image reconstruction.  相似文献   

13.
Western equine encephalitis virus (WEEV) is a naturally occurring recombinant virus derived from ancestral Sindbis and Eastern equine encephalitis viruses. We previously showed that infection by WEEV isolates McMillan (McM) and IMP-181 (IMP) results in high (∼90–100%) and low (0%) mortality, respectively, in outbred CD-1 mice when virus is delivered by either subcutaneous or aerosol routes. However, relatively little is known about specific virulence determinants of WEEV. We previously observed that IMP infected Culex tarsalis mosquitoes at a high rate (app. 80%) following ingestion of an infected bloodmeal but these mosquitoes were infected by McM at a much lower rate (10%). To understand the viral role in these phenotypic differences, we characterized the pathogenic phenotypes of McM/IMP chimeras. Chimeras encoding the E2 of McM on an IMP backbone (or the reciprocal) had the most significant effect on infection phenotypes in mice or mosquitoes. Furthermore, exchanging the arginine, present on IMP E2 glycoprotein at position 214, for the glutamine present at the same position on McM, ablated mouse mortality. Curiously, the reciprocal exchange did not confer mouse virulence to the IMP virus. Mosquito infectivity was also determined and significantly, one of the important loci was the same as the mouse virulence determinant identified above. Replacing either IMP E2 amino acid 181 or 214 with the corresponding McM amino acid lowered mosquito infection rates to McM-like levels. As with the mouse neurovirulence, reciprocal exchange of amino acids did not confer mosquito infectivity. The identification of WEEV E2 amino acid 214 as necessary for both IMP mosquito infectivity and McM mouse virulence indicates that they are mutually exclusive phenotypes and suggests an explanation for the lack of human or equine WEE cases even in the presence of active transmission.  相似文献   

14.
15.
Two plaque mutants were isolated from tissue cultures infected persistently with Western equine encephalitis virus. A large plaque mutant proved to be markedly avirulent for mice.  相似文献   

16.
A new purification procedure was adopted for Eastern equine encephalitis virus which does not subject the virus to pelleting at any stage. Three- to 4-liter volumes were passed through a diethylaminoethyl cellulose column. The virus-containing fractions were banded on a sucrose cushion and finally concentrated in an isopycnic band in a linear sucrose gradient. This method reduced the volume 1,000-fold with a concomitant increase in viral titer, i.e., better than 90% recovery. Numerous criteria have been used to establish that this viral preparation was essentially free from cellular debris and nonviral material. Physical studies on this purified viral product were initiated. The sedimentation coefficient as determined by band sedimentation was 240S, the buoyant density in sucrose was 1.18 g/cc, and the diameter of the virus was 54 nm. From the diameter and the buoyant density it was possible to calculate the molecular weight of a spherical particle. In this case, the calculated molecular weight for Eastern equine encephalitis virus was 58 x 10(6) daltons.  相似文献   

17.
Venezuelan equine encephalitis virus (VEEV) has been responsible for hundreds of thousands of human and equine cases of severe disease in the Americas. A passive surveillance study was conducted in Peru, Bolivia and Ecuador to determine the arboviral etiology of febrile illness. Patients with suspected viral-associated, acute, undifferentiated febrile illness of <7 days duration were enrolled in the study and blood samples were obtained from each patient and assayed by virus isolation. Demographic and clinical information from each patient was also obtained at the time of voluntary enrollment. In 2005–2007, cases of Venezuelan equine encephalitis (VEE) were diagnosed for the first time in residents of Bolivia; the patients did not report traveling, suggesting endemic circulation of VEEV in Bolivia. In 2001 and 2003, VEE cases were also identified in Ecuador. Since 1993, VEEV has been continuously isolated from patients in Loreto, Peru, and more recently (2005), in Madre de Dios, Peru. We performed phylogenetic analyses with VEEV from Bolivia, Ecuador and Peru and compared their relationships to strains from other parts of South America. We found that VEEV subtype ID Panama/Peru genotype is the predominant one circulating in Peru. We also demonstrated that VEEV subtype ID strains circulating in Ecuador belong to the Colombia/Venezuela genotype and VEEV from Madre de Dios, Peru and Cochabamba, Bolivia belong to a new ID genotype. In summary, we identified a new major lineage of enzootic VEEV subtype ID, information that could aid in the understanding of the emergence and evolution of VEEV in South America.  相似文献   

18.
Epidemic-epizootic Venezuelan equine encephalitis (VEE) viruses (VEEV) have emerged repeatedly via convergent evolution from enzootic predecessors. However, previous sequence analyses have failed to identify common sets of nucleotide or amino acid substitutions associated with all emergence events. During 1993 and 1996, VEEV subtype IE epizootics occurred on the Pacific Coast of the states of Chiapas and Oaxaca in southern Mexico. Like other epizootic VEEV strains, when inoculated into guinea pigs and mice, the Mexican isolates were no more virulent than closely related enzootic strains, complicating genetic studies of VEE emergence. Complete genomic sequences of 4 of the Mexican strains were determined and compared to those of closely related enzootic subtype IE isolates from Guatemala. The epizootic viruses were less than 2% different at the nucleotide sequence level, and phylogenetic relationships confirmed that the equine-virulent Mexican strains probably evolved from enzootic progenitors on the Pacific Coast of Mexico or Guatemala. Of 35 amino acids that varied among the Guatemalan and Mexican isolates, only 8 were predicted phylogenetically to have accompanied the phenotypic change. One mutation at position 117 of the E2 envelope glycoprotein, involving replacement of Glu by Lys, resulted in a small-plaque phenotype characteristic of epizootic VEEV strains. Analysis of additional E2 sequences from representative enzootic and epizootic VEEV isolates implicated similar surface charge changes in the emergence of previous South American epizootic phenotypes, indicating that E2 mutations are probably important determinants of the equine-virulent phenotype and of VEE emergence. Maximum-likelihood analysis indicated that one change at E2 position 213 has been influenced by positive selection and convergent evolution of the epizootic phenotype.  相似文献   

19.
Increased expression of inducible nitric oxide synthase has been shown in murine Venezuelan equine encephalitis (VEE) virus infection. In this experimental model, melatonin (MTL) treatment has shown to be beneficial. The aim of this study was to determine the effect of VEE virus on the nitric oxide (NO) production and lipid peroxidation in neuroblastoma cell cultures, and to investigate the role of MTL during cell-virus interaction. Neuroblastoma cells were co-cultured with VEE virus and treated with MTL at doses ranging from 0 to 1.8 mM, for 6, 12, 24 and 48 h. NO and lipid peroxidation were measured in culture supernatants and in the cellular content by nitrite concentration and thiobarbituric acid assay, respectively. Expression of inducible nitric oxide synthase (iNOS) was determined by indirect immunofluorescence. Increased production of NO and lipid peroxidation products were found in supernatants and cellular contents of VEE virus treated cultures. Both NO and lipid peroxidation were decreased by MTL treatment in a time dependent manner. Increased iNOS expression was observed in VEE virus infected cultures that was reduced by MTL treatment. These results could be related to the beneficial role of MTL in the VEE experimental disease and address the possible therapeutic potential of the hormone in human VEE virus infection.  相似文献   

20.
For a variety of infectious diseases, the richness of the community of potential host species has emerged as an important factor in pathogen transmission, whereby a higher richness of host species is associated with a lowered disease risk. The proposed mechanism driving this pattern is an increased likelihood in species-rich communities that infectious individuals will encounter dead-end hosts. Mosquito-borne pathogen systems potentially are exceptions to such “dilution effects” because mosquitoes vary their rates of use of vertebrate host species as bloodmeal sources relative to host availabilities. Such preferences may violate basic assumptions underlying the hypothesis of a dilution effect in pathogen systems. Here, we describe development of a model to predict exposure risk of sentinel chickens to eastern equine encephalitis virus (EEEV) in Walton County, Florida between 2009 and 2010 using avian species richness as well as densities of individual host species potentially important to EEEV transmission as candidate predictor variables. We found the highest support for the model that included the density of northern cardinals, a highly preferred host of mosquito vectors of EEEV, as a predictor variable. The highest-ranking model also included Culiseta melanura abundance as a predictor variable. These results suggest that mosquito preferences for vertebrate hosts influence pathogen transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号