首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A 3-neuron central pattern generator, whose sufficiency and necessity has been directly demonstrated, mediates aerial respiratory behaviour in the pond snail, Lymnaea stagnalis. This behaviour can be operantly conditioned, and this associative learning is consolidated into long-lasting memory. Depending on the operant conditioning training procedure used the learning can be consolidated into intermediate term (ITM) or long-term memory (LTM). ITM persists for only 2-3 h, whilst LTM persists for days to weeks. LTM is dependent on both altered gene activity and new protein synthesis while ITM is only dependent on new protein synthesis. We have now directly established that one of the 3-CPG neurons, RPeD1, is a site of LTM formation and storage. We did this by ablating the soma of RPeD1 and leaving behind a functional primary neurite capable of mediating the necessary synaptic interactions to drive aerial respiratory behaviour by the 3-neuron CPG. However, following soma ablation the neuronal circuit is only capable of mediating learning and ITM. LTM can no longer be demonstrated. However, if RPeD1's soma is ablated after LTM consolidation memory is still present. Thus the soma is not needed for the retention of LTM. Using a similar strategy it may be possible to block forgetting.  相似文献   

2.
Classical conditioning of the gill withdrawal reflex can be demonstrated in two different in vitro Aplysia preparations. The data obtained show that as conditioning of the gill withdrawal reflex proceeds there are changes in synaptic efficacy at the central sensory-motor neurone synapse. These changes in synaptic efficacy, however, are not necessary nor are they sufficient for the observed changes in gill reflex behaviour. Changes must be occurring at other loci within the nervous system to mediate the associative learning. We hypothesized, based on data obtained from one type of in vitro preparation, that changes occur in the ability of the motor neurone to elicit a gill withdrawal response as a result of classical conditioning training. In order to test this hypothesis we depolarized an identified gill motor neurone before and after classical conditioning and found that the motor neurone's ability to elicit a gill movement was facilitated following classical conditioning training. In control preparations that received an explicitly unpaired stimulus paradigm (which does not lead to classical conditioning of the reflex) there was a decrease in the efficacy of a gill motor neurone to elicit a gill withdrawal response. There are a number of possible sites within the integrated central (CNS) and peripheral (PNS) nervous systems where changes could occur to bring about the alterations in motor neurone efficacy. Our results suggest that changes in neuronal activity which underlie learning occur at multiple sites within the nervous system and that a complete understanding of the mechanisms of associative learning can only be obtained when all of these sites are taken into account.  相似文献   

3.
The effects of stress on memory are typically assessed individually; however, in reality different stressors are often experienced simultaneously. Here we determined the effect that two environmentally relevant stressors, crowding and low calcium availability, have on memory and neural activity following operant conditioning of aerial respiration in the pond snail, Lymnaea stagnalis. We measured aerial breathing behaviour and activity of a neuron necessary for memory formation, right pedal dorsal 1 (RPeD1), in the central pattern generator (CPG) that drives aerial respiration in untrained animals, and assessed how these traits changed following training. In naïve animals both crowding and combined stressors significantly depressed burst activity in RPeD1 which correlated with a depression in aerial breathing behaviour, whereas low calcium availability had no effect on RPeD1 activity. Following training, changes in burst activity in RPeD1 correlated with behavioural changes, decreasing relative to their naïve state at 3 h and 24 h in control conditions when both intermediate-term memory (ITM: 3 h) and long-term memory (LTM: 24 h) are formed, at 3 h but not 24 h when exposed to individual stressors when only ITM is formed, and did not change in combined stressors (i.e. when no memory is formed). Additionally, we also found that Lymnaea formed short-term memory (STM: 10 min) in the presence of individual stressors or under control conditions, but failed to do so in the presence of combined stressors. Our data demonstrate that by combining stressors that individually block LTM only we can block all memory processes. Therefore the effects of two stressors with similar individual affects on memory phenotype may be additive when experienced in combination.  相似文献   

4.
Most neuronal models of learning assume that changes in synaptic strength are the main mechanism underlying long-term memory (LTM) formation. However, we show here that a persistent depolarization of membrane potential, a type of cellular change that increases neuronal responsiveness, contributes significantly to a long-lasting associative memory trace. The use of a model invertebrate network with identified neurons and known synaptic connectivity had the advantage that the contribution of this cellular change to memory could be evaluated in a neuron with a known function in the learning circuit. Specifically, we used the well-understood motor circuit underlying molluscan feeding and showed that a key modulatory neuron involved in the initiation of feeding ingestive movements underwent a long-term depolarization following behavioral associative conditioning. This depolarization led to an enhanced single cell and network responsiveness to a previously neutral tactile conditioned stimulus, and the persistence of both matched the time course of behavioral associative memory. The change in the membrane potential of a key modulatory neuron is both sufficient and necessary to initiate a conditioned response in a reduced preparation and underscores its importance for associative LTM.  相似文献   

5.
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored ‘what we can teach Lymnaea’ by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: ‘what can Lymnaea teach us?’, it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research.  相似文献   

6.
The main statements of author's conception concerning the associative brain systems (thalamoparietal and thalamofrontal) as the behaviour control systems are presented. The participation of associative systems in performance of the high brain functions ensures due to the entrance of the whole information spectrum of biological and signal significance into them and to the presence of neuronal plastic mechanisms, the mechanisms for retrieval the whole behaviour programs from the long-term memory and the ability of short-term storing of behaviour programs and estimation of their adequacy on the ground of dominant and conditioning mechanisms.  相似文献   

7.
Data by the authors, as well as from other laboratories, show that the intertrial responses correlated with accuracy of avoidance or feeding behaviour. Moreover our previously data demonstrated the definite changes of neuronal activity, heart rate and respiration during intertrial responses. In this study we investigated the time-course of intertrial response appearance, the pattern of neurophysiological parameters during intertrial periods, and the types of intertrial responses. Experiment 1 showed that different environmental stimuli influenced the level of intertrial responses and successfulness of the avoidance learning. In experiment 2, in which learning and extinction procedures were presented in rabbit passive-avoidance conditioning, two types of intertrial responses were observed; the first type repeated the pain reinforcement, the second one imitated the conditioned reaction of neuronal activity, heart rate, respiration, and moving. These investigations suggest that the processes of intertrial eliciting of avoidance effector programs may be one of the mechanisms of fixation in memory and play an important role in acquisition of more effective results.  相似文献   

8.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

9.
Binge drinking is an increasingly recognized problem within the UK. We have studied the relationship of binge drinking to cognitive and emotional functioning in young adults, and have found evidence for increased impulsivity, impairments in spatial working memory and impaired emotional learning. Since in human studies it is difficult to understand whether such behavioural changes pre-date or are a consequence of binge drinking, we have also studied parallel behaviours in a rodent model, in which rats are exposed to intermittent episodes of alcohol consumption and withdrawal. In this model, and in parallel with our findings in human binge drinkers, and alcoholic patients who have undergone multiple episodes of detoxification, we have found evidence for impairments in aversive conditioning as well as increased impulsivity. These behavioural changes are accompanied by facilitated excitatory neurotransmission and reduced plasticity (long-term potentiation (LTP)) in amygdala and hippocampus. The impaired LTP is accompanied by both impaired associative learning and inappropriate generalization of previously learned associations to irrelevant stimuli. We propose that repeated episodes of withdrawal from alcohol induce aberrant neuronal plasticity that results in altered cognitive and emotional competences.  相似文献   

10.
11.
A companion paper in a previous issue of this journal presented a resistance-capacitance circuit computer model of the four-neuron visual-vestibular network of the invertebrate marine mollusk Hermissenda crassicornis. In the present paper, we demonstrate that changes in the model's output in response to simulated associative training is quantitatively similar to behavioral and electrophysiological changes in response to associative training of Hermissenda crassicornis. Specifically, the model demonstrates many characteristics of conditioning: sensitivity to stimulus contingency, stimulus specificity, extinction, and savings. The model's learning features also are shown to be devoid of non-associative components. Thus, this computational model is an excellent tool for examining the information flow and dynamics of biological associative learning and for uncovering insights concerning associative learning, memory, and recall that can be applied to the development of artificial neural networks.  相似文献   

12.
In sexually reproducing animals, mating is essential for transmitting genetic information to the next generation and therefore animals have evolved mechanisms for optimizing the chance of successful mate location. In the soil nematode C. elegans, males approach hermaphrodites via the ascaroside pheromones, recognize hermaphrodites when their tails contact the hermaphrodites'' body, and eventually mate with them. These processes are mediated by sensory signals specialized for sexual communication, but other mechanisms may also be used to optimize mate location. Here we describe associative learning whereby males use sodium chloride as a cue for hermaphrodite location. Both males and hermaphrodites normally avoid sodium chloride after associative conditioning with salt and starvation. However, we found that males become attracted to sodium chloride after conditioning with salt and starvation if hermaphrodites are present during conditioning. For this conditioning, which we call sexual conditioning, hermaphrodites are detected by males through pheromonal signaling and additional cue(s). Sex transformation experiments suggest that neuronal sex of males is essential for sexual conditioning. Altogether, these results suggest that C. elegans males integrate environmental, internal and social signals to determine the optimal strategy for mate location.  相似文献   

13.
The temporal pairing of a neutral stimulus with a reinforcer (reward or punishment) can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. Neuronal correlates of associative plasticity have been identified in several regions of the insect brain. In particular, the mushroom bodies have been shown to be necessary for aversive olfactory memory formation. However, little is known about which neurons mediate the reinforcing stimulus. Using functional optical imaging, we now show that dopaminergic projections to the mushroom-body lobes are weakly activated by odor stimuli but respond strongly to electric shocks. However, after one of two odors is paired several times with an electric shock, odor-evoked activity is significantly prolonged only for the "punished" odor. Whereas dopaminergic neurons mediate rewarding reinforcement in mammals, our data suggest a role for aversive reinforcement in Drosophila. However, the dopaminergic neurons' capability of mediating and predicting a reinforcing stimulus appears to be conserved between Drosophila and mammals.  相似文献   

14.
BACKGROUND: It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. RESULTS: By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. CONCLUSIONS: We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.  相似文献   

15.
Honeybees (Apis mellifera) are well known for their communication and orientation skills and for their impressive learning capability1,2. Because the survival of a honeybee colony depends on the exploitation of food sources, forager bees learn and memorize variable flower sites as well as their profitability. Forager bees can be easily trained in natural settings where they forage at a feeding site and learn the related signals such as odor or color. Appetitive associative learning can also be studied under controlled conditions in the laboratory by conditioning the proboscis extension response (PER) of individually harnessed honeybees3,4. This learning paradigm enables the study of the neuronal and molecular mechanisms that underlie learning and memory formation in a simple and highly reliable way5-12. A behavioral pharmacology approach is used to study molecular mechanisms. Drugs are injected systemically to interfere with the function of specific molecules during or after learning and memory formation13-16.Here we demonstrate how to train harnessed honeybees in PER conditioning and how to apply drugs systemically by injection into the bee flight muscle.  相似文献   

16.
Apparently unpaired exposure to appetitive or aversive stimuli can suppress or enhance later associative learning. While the suppressive effect has been found in both vertebrate and invertebrate animals, it is not clear if the enhancing effect is restricted to the vertebrates. Additionally, whether Drosophila associative learning can be influenced in either direction is open. To address these questions, we examined the effects of pre-exposing flies to a high temperature negative reinforcer in the heat-box place-learning paradigm. We found that pre-exposing flies to an unavoidable high temperature enhanced later associative conditioning that uses mild increases in temperature. This enhancement lasts at least 20 min, does not depend on changes in the straightforward avoidance behavior of a high temperature source, and is independent of the antennal thermosensor. We thus provide an example of enhanced associative learning after unpaired exposure to a typical reinforcer in an invertebrate animal, suggesting the conservation of this component of learning.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) has been implicated in hippocampal-dependent learning processes, and carriers of the Met allele of the Val66Met BDNF genotype are characterized by reduced hippocampal structure and function. Recent nonhuman animal work suggests that BDNF is also crucial for amygdala-dependent associative learning. The present study sought to examine fear conditioning as a function of the BDNF polymorphism. Fifty-seven participants were genotyped for the BDNF polymorphism and took part in a differential-conditioning paradigm. Participants were shocked following a particular conditioned stimulus (CS+) and were also presented with stimuli that ranged in perceptual similarity to the CS+ (20, 40 or 60% smaller or larger than the CS+). The eye blink component of the startle response was measured to quantify fear conditioning; post-task shock likelihood ratings for each stimulus were also obtained. All participants reported that shock likelihood varied with perceptual similarity to the CS+ and showed potentiated startle in response to CS ± 20% stimuli. However, only the Val/Val group had potentiated startle responses to the CS+. Met allele carrying individuals were characterized by deficient fear conditioning – evidenced by an attenuated startle response to CS+ stimuli. Variation in the BDNF genotype appears related to abnormal fear conditioning, consistent with nonhuman animal work on the importance of BDNF in amygdala-dependent associative learning. The relation between genetic variation in BDNF and amygdala-dependent associative learning deficits is discussed in terms of potential mechanisms of risk for psychopathology.  相似文献   

18.
《Journal of Physiology》1996,90(5-6):395-398
A top-down approach as applied to learning and memory in honeybees provides the opportunity of relating different levels of complexity to each other, and of analyzing the rules and mechanisms from the viewpoint of the respective next higher level. Olfactory conditioning of harnessed bees exemplifies essential elements of associative learning and, in general, forms a bridge between the systems and the cellular levels of analysis. Intracellular recordings of identified neurons during olfactory conditioning play a key role in this effort. They allow testing of the assumptions made by modern behavioral theories of associative learning and provide access to cellular and molecular studies, owing to the identification of their transmitters and the peculiarities of the connectivities. Analysis at this intermediate level of complexity is particularly profitable in the bee, because essential neural elements of the associative network are known and can be tested during ongoing learning behavior. In this respect, the honeybee offers unique properties for the building of bridges between the molecular, cellular neuronal, network and behavioral levels of associative learning.  相似文献   

19.
Olfactory learning and memory processes in Drosophila have been well investigated with aversive conditioning, but appetitive conditioning has rarely been documented. Here, we report for the first time individual olfactory conditioning of proboscis activity in restrained Drosophila melanogaster. The protocol was adapted from those developed for proboscis extension conditioning in the honeybee Apis mellifera. After establishing a scale of small proboscis movements necessary to characterize responses to olfactory stimulation, we applied Pavlovian conditioning, with five trials consisting of paired presentation of a banana odour and a sucrose reward. Drosophila showed conditioned proboscis activity to the odour, with a twofold increase of percentage of responses after the first trial. No change occurred in flies experiencing unpaired presentations of the stimuli, confirming an associative basis for this form of olfactory learning. The adenylyl cyclase mutant rutabaga did not exhibit learning in this paradigm. This protocol generated at least a short-term memory of 15 min, but no significant associative memory was detected at 1 h. We also showed that learning performance was dependent on food motivation, by comparing flies subjected to different starvation regimes.  相似文献   

20.
In the pond snail Lymnaea stagnalis, a firm phase-locked coupling of pneumostome movements to the locomotor cycle was observed during terrestrial locomotion, thus demonstrating that the coordination between locomotor and respiratory rhythms is a natural behavioral event in this animal. The results of computational modelling suggest a possible scheme of coordination between these motor rhythms which is based on inhibitory projection from the central pattern generator for locomotion to that for respiration. These findings allow the neuronal mechanisms underlying coordination of two rhythmic behaviors to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号