首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-gamma are required for cell viability. These observations highlighted the essential role of CAF-1-dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.  相似文献   

2.
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.  相似文献   

3.
4.
Asf1 (anti-silencing function 1), a well conserved protein from yeast to humans, acts as a histone chaperone and is predicted to participate in a variety of chromatin-mediated cellular processes. To investigate the physiological role of vertebrate Asf1 in vivo, we generated a conditional Asf1-deficient mutant from chicken DT40 cells. Induction of Asf1 depletion resulted in the accumulation of cells in S phase with decreased DNA replication and increased mitotic aberrancy forming multipolar spindles, leading to cell death. In addition, nascent chromatin in Asf1-depleted cells showed increased nuclease sensitivity, indicating impaired nucleosome assembly during DNA replication. Complementation analyses revealed that the functional domain of Asf1 for cell viability was confined to the N-terminal core domain (amino acids 1-155) that is a binding platform for histones H3/H4, CAF-1p60, and HIRA, whereas Asf1 mutant proteins, abolishing binding abilities with both p60 and HIRA, exhibit no effect on viability. These results together indicate that the vertebrate Asf1 plays a crucial role in replication-coupled chromatin assembly, cell cycle progression, and cellular viability and provide a clue of a possible role in a CAF-1- and HIRA-independent chromatin-modulating process for cell proliferation.  相似文献   

5.
In mammals, heterochromatin is characterized by DNA methylation at CpG dinucleotides and methylation at lysine 9 of histone H3. It is currently unclear whether there is a coordinated transmission of these two epigenetic modifications through DNA replication. Here we show that the methyl-CpG binding protein MBD1 forms a stable complex with histone H3-K9 methylase SETDB1. Moreover, during DNA replication, MBD1 recruits SETDB1 to the large subunit of chromatin assembly factor CAF-1 to form an S phase-specific CAF-1/MBD1/SETDB1 complex that facilitates methylation of H3-K9 during replication-coupled chromatin assembly. In the absence of MBD1, H3-K9 methylation is lost at multiple genomic loci and results in activation of p53BP2 gene, normally repressed by MBD1 in HeLa cells. Our data suggest a model in which H3-K9 methylation by SETDB1 is dependent on MBD1 and is heritably maintained through DNA replication to support the formation of stable heterochromatin at methylated DNA.  相似文献   

6.
Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination-mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.  相似文献   

7.
During mammalian development, chromatin dynamics and epigenetic marking are important for genome reprogramming. Recent data suggest an important role for the chromatin assembly machinery in this process. To analyze the role of chromatin assembly factor 1 (CAF-1) during pre-implantation development, we generated a mouse line carrying a targeted mutation in the gene encoding its large subunit, p150CAF-1. Loss of p150CAF-1 in homozygous mutants leads to developmental arrest at the 16-cell stage. Absence of p150CAF-1 in these embryos results in severe alterations in the nuclear organization of constitutive heterochromatin. We provide evidence that in wild-type embryos, heterochromatin domains are extensively reorganized between the two-cell and blastocyst stages. In p150CAF-1 mutant 16-cell stage embryos, the altered organization of heterochromatin displays similarities to the structure of heterochromatin in two- to four-cell stage wild-type embryos, suggesting that CAF-1 is required for the maturation of heterochromatin during preimplantation development. In embryonic stem cells, depletion of p150CAF-1 using RNA interference results in the mislocalization, loss of clustering, and decondensation of pericentric heterochromatin domains. Furthermore, loss of CAF-1 in these cells results in the alteration of epigenetic histone methylation marks at the level of pericentric heterochromatin. These alterations of heterochromatin are not found in p150CAF-1-depleted mouse embryonic fibroblasts, which are cells that are already lineage committed, suggesting that CAF-1 is specifically required for heterochromatin organization in pluripotent embryonic cells. Our findings underline the role of the chromatin assembly machinery in controlling the spatial organization and epigenetic marking of the genome in early embryos and embryonic stem cells.  相似文献   

8.
9.
10.
HP1 proteins are central to the assembly and spread of heterochromatin containing histone H3K9 methylation. The chromodomain (CD) of HP1 proteins specifically recognizes the methyl mark on H3 peptides, but the same extent of specificity is not observed within chromatin. The chromoshadow domain of HP1 proteins promotes homodimerization, but this alone cannot explain heterochromatin spread. Using the S. pombe HP1 protein, Swi6, we show that recognition of H3K9-methylated chromatin in vitro relies on an interface between two CDs. This interaction causes Swi6 to tetramerize on a nucleosome, generating two vacant CD sticky ends. On nucleosomal arrays, methyl mark recognition is highly sensitive to internucleosomal distance, suggesting that the CD sticky ends bridge nearby methylated nucleosomes. Strengthening the CD-CD interaction enhances silencing and heterochromatin spread in vivo. Our findings suggest that recognition of methylated nucleosomes and HP1 spread on chromatin are structurally coupled and imply that methylation and nucleosome arrangement synergistically regulate HP1 function.  相似文献   

11.
Dong H  Lin W  Zhang CK  Xiong H  Fu G  Jin WR  Chen R  Chen Z  Qi ZT  Huang GM 《Gene》2001,264(2):187-196
  相似文献   

12.
Kirik A  Pecinka A  Wendeler E  Reiss B 《The Plant cell》2006,18(10):2431-2442
DNA replication in cycling eukaryotic cells necessitates the reestablishment of chromatin after nucleosome redistribution from the parental to the two daughter DNA strands. Chromatin assembly factor 1 (CAF-1), a heterotrimeric complex consisting of three subunits (p150/p60/p48), is one of the replication-coupled assembly factors involved in the reconstitution of S-phase chromatin. CAF-1 is required in vitro for nucleosome assembly onto newly replicated chromatin in human cells and Arabidopsis thaliana, and defects in yeast (Saccharomyces cerevisiae) affect DNA damage repair processes, predominantly those involved in genome stability. However, in vivo chromatin defects of caf-1 mutants in higher eukaryotes are poorly characterized. Here, we show that fasciata1-4 (fas1-4), a new allele of the Arabidopsis fas1 mutant defective in the p150 subunit of CAF-1, has a severe developmental phenotype, reduced heterochromatin content, and a more open conformation of euchromatin. Most importantly, homologous recombination (HR), a process involved in maintaining genome stability, is increased dramatically in fas1-4, as indicated by a 96-fold stimulation of intrachromosomal HR. Together with the open conformation of chromatin and the nearly normal expression levels of HR genes in the mutant, this result suggests that chromatin is a major factor restricting HR in plants.  相似文献   

13.
Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage.  相似文献   

14.
The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3–H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three his-tone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3–H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3–H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.Key words: Gen5, Rtt109, chromatin, nucleosome assembly, genome integrity  相似文献   

15.
The efficient assembly of newly replicated and repaired DNA into chromatin is essential for proper genome function. Based on genetic studies in Saccharomyces cerevisiae, the histone chaperone anti-silencing function 1 (Asf1) has been implicated in the DNA repair response. Here, the human homologs are shown to function synergistically with human CAF-1 to assemble nucleosomes during nucleotide excision repair in vitro. Furthermore, we demonstrate that hAsf1 proteins can interact directly with the p60 subunit of hCAF-1. In contrast to hCAF-1 p60, the nuclear hAsf1 proteins are not significantly associated with chromatin in cells before or after the induction of DNA damage, nor specifically recruited to damaged DNA during repair in a bead-linked DNA assay. A model is proposed in which the synergism between hAsf1 and CAF-1 for nucleosome formation during DNA repair is achieved through a transient physical interaction allowing histone delivery from Asf1 to CAF-1.  相似文献   

16.
The influence of reversible protein phosphorylation on nucleosome assembly during DNA replication was analyzed in extracts from human cells. Inhibitor studies and add-back experiments indicated requirements of cyclin A/Cdk2, cyclin E/Cdk2, and protein phosphatase type 1 (PP1) activities for nucleosome assembly during DNA synthesis by chromatin assembly factor 1 (CAF-1). The p60 subunit of CAF-1 is a molecular target for reversible phosphorylation by cyclin/Cdk complexes and PP1 during nucleosome assembly and DNA synthesis in vitro. Purified p60 can be directly phosphorylated by purified cyclin A/Cdk2, cyclin E/Cdk2, and cyclin B1/Cdk1, but not by cyclin D/Cdk4 complexes in vitro. Cyclin B1/Cdk1 triggers hyperphosphorylation of p60 in the presence of additional cytosolic factors. CAF-1 containing hyperphosphorylated p60 prepared from mitotic cells is inactive in nucleosome assembly and becomes activated by dephosphorylation in vitro. These data provide functional evidence for a requirement of the cell cycle machinery for nucleosome assembly by CAF-1 during DNA replication.  相似文献   

17.
Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes.Eukaryotic cells in S phase not only have to replicate their entire genome but also faithfully reproduce preexisting chromatin structures onto the two nascent chromatids. The duplication of chromatin structures during DNA replication is a challenging task for eukaryotic cells. Newly synthesized histones are deposited very rapidly behind replication forks (150 to 300 bp), almost as soon as enough DNA has emerged from the replisome to allow the formation of nucleosome core particles (52). A key protein involved in coupling nucleosome assembly to DNA replication is chromatin assembly factor 1 (CAF-1). CAF-1 is a complex of three polypeptide subunits, known as p150, p60, and RbAp48 in vertebrates, that mediates the first step in nucleosome formation by depositing newly synthesized histone H3/H4 onto DNA (25, 50).In mouse and human cells, CAF-1 localizes to virtually all DNA replication foci throughout the S phase (28, 38, 49, 54). This strongly argues that CAF-1 is a physiologically relevant histone H3/H4 nucleosome assembly factor. In addition, disruption of CAF-1 function in human cells results in a severe loss of viability that is accompanied by spontaneous DNA damage and a block in S-phase progression (20, 40, 60). Thus, unlike in Saccharomyces cerevisiae, the function of CAF-1 in vertebrates cannot be replaced by that of other nucleosome factors, such as members of the Hir protein family or Rtt106 (24, 27, 29). This may be because, unlike CAF-1, HIRA (a human homologue of yeast Hir1 and Hir2) does not associate with core histones that are synthesized during S phase (55). In human cells, the ability to promote nucleosome assembly preferentially onto replicating DNA is thus far unique to CAF-1.This distinctive property of CAF-1 is mediated through proliferating cell nuclear antigen (PCNA), a homotrimeric ring that encircles double-stranded DNA (4) and acts as a sliding clamp to tether DNA polymerases to their DNA substrate and thereby enhance their processivity. Several lines of biochemical and genetic evidence support the role of PCNA in CAF-1-mediated nucleosome assembly. First, CAF-1 colocalizes with PCNA in vivo and binds directly to PCNA in vitro (27, 35, 49, 61). Second, even in the presence of excess unreplicated DNA, CAF-1 can select fully replicated plasmid DNA molecules as preferential substrates for histone deposition, but only when those molecules are associated with PCNA (49). Third, PCNA-driven DNA synthesis can also attract CAF-1 to sites of DNA repair events, such as nucleotide excision repair (12, 15, 32, 35). Fourth, a specific PCNA mutation impairs the role of CAF-1 in telomeric silencing in S. cerevisiae (48, 61). Interestingly, a number of PCNA mutations that reduce its interaction with other PCNA-binding proteins have apparently no effect on CAF-1 function in vivo (48, 61). This implies that the interaction of CAF-1 with PCNA is substantially different from that of other PCNA-binding proteins.Enhancing DNA polymerase processivity is not the only function of PCNA in DNA replication. The sliding clamp also directly binds to other replication enzymes, such as DNA ligase 1, DNA polymerase δ, and FEN1 (14, 21, 37). In addition to its roles in DNA synthesis and nucleosome assembly, PCNA also directly binds to a number of enzymes that continuously monitor and correct the quality of nascent DNA. These include enzymes involved in epigenetic inheritance, such as the maintenance DNA methyltransferase DNMT1 (8), base excision repair (UNG2) (42), mismatch repair (MSH3 and MSH6) (9), DNA lesion bypass (23), and many other processes (31, 36). Even subtle defects in many of these processes, including CAF-1-dependent nucleosome assembly (39), lead to either chromosome rearrangements or mutator phenotypes, which are common features of many human cancers. Surprisingly, many of these enzymes interact with PCNA via canonical PCNA interaction peptides (PIPs) that conform to the consensus sequence QXXhXXaa, where Q is a glutamine, h is a hydrophobic residue (valine, methionine, leucine, or isoleucine), a is an aromatic residue (phenylalanine, tyrosine, tryptophan, or occasionally histidine), and X represents any amino acid. Therefore, regulatory mechanisms must exist to ensure that these fundamentally distinct PCNA-dependent processes occur in a carefully orchestrated manner without mutually interfering with each other.In order to understand how the action of CAF-1 is coordinated with that of other PCNA-binding proteins at replication forks, we carried out a thorough study of CAF-1 PIPs by analyzing their functions using a number of assays. We found that the p150 subunit of CAF-1 contains two fundamentally distinct PIPs. The N-terminal motif (PIP1) binds strongly to PCNA in vitro but is dispensable for nucleosome assembly during simian virus 40 (SV40) DNA replication. In contrast, despite the lack of a key conserved residue, the second PIP (PIP2) of CAF-1 is crucial for replication-dependent nucleosome assembly in vitro and for targeting CAF-1 to DNA replication foci in vivo. Remarkably, although PIP2 exhibits some features of canonical PIPs, it binds only weakly to PCNA in vitro. We suggest that regulated PCNA binding via this peptide may play an important role in ensuring that CAF-1 can efficiently deposit histones behind replication forks without competing with the numerous other enzymes that require continuous access to PCNA during DNA replication. Consistent with this, we show that CAF-1 PIPs possess the ability to preferentially interfere with nucleosome assembly rather than with DNA synthesis.  相似文献   

18.
Replication-coupled nucleosome assembly is a critical step in packaging newly synthesized DNA into chromatin. Previous studies have defined the importance of the histone chaperones CAF-1 and ASF1A, the replicative clamp PCNA, and the clamp loader RFC for the assembly of nucleosomes during DNA replication. Despite significant progress in the field, replication-coupled nucleosome assembly is not well understood. One of the complications in elucidating the mechanisms of replication-coupled nucleosome assembly is the lack of a defined system that faithfully recapitulates this important biological process in vitro. We describe here a defined system that assembles nucleosomal arrays in a manner dependent on the presence of CAF-1, ASF1A-H3-H4, H2A-H2B, PCNA, RFC, NAP1L1, ATP, and strand breaks. The loss of CAF-1 p48 subunit causes a strong defect in packaging DNA into nucleosomes by this system. We also show that the defined system forms nucleosomes on nascent DNA synthesized by the replicative polymerase δ. Thus, the developed system reproduces several key features of replication-coupled nucleosome assembly.  相似文献   

19.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

20.
Shibahara K  Stillman B 《Cell》1999,96(4):575-585
Chromatin assembly factor 1 (CAF-1) is required for inheritance of epigenetically determined chromosomal states in vivo and promotes assembly of chromatin during DNA replication in vitro. Herein, we demonstrate that after DNA replication, replicated, but not unreplicated, DNA is also competent for CAF-1-dependent chromatin assembly. The proliferating cell nuclear antigen (PCNA), a DNA polymerase clamp, is a component of the replication-dependent marking of DNA for chromatin assembly. The clamp loader, replication factor C (RFC), can reverse this mark by unloading PCNA from the replicated DNA. PCNA binds directly to p150, the largest subunit of CAF-1, and the two proteins colocalize at sites of DNA replication in cells. We suggest that PCNA and CAF-1 connect DNA replication to chromatin assembly and the inheritance of epigenetic chromosome states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号