首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity increases the risk for hepatic steatosis. Recent studies have demonstrated that high fat diet (HFD) may affect sphingolipid formation in skeletal muscles, heart, and other tissues. In this work we sought to investigate whether HFD feeding provokes changes in content and fatty acids (FAs) composition of sphingomyelin and ceramide at the level of liver and hepatic nuclei. Furthermore, we investigated whether the ceramide formation is related to the activity of either neutral sphingomyelinase (N-SMase) or acidic sphingomyelinase (A-SMase). Three weeks of HFD provision induced pronounced ceramide and sphingomyelin accumulation in both liver and hepatic nuclei, accompanied by increased activity of N-SMase but not A-SMase. Furthermore, a shift toward greater FAs saturation status in these sphingolipids was also observed. These findings support the conclusion that HFD has a major impact on sphingolipid metabolism not only in the liver, but also in hepatic nuclei.  相似文献   

2.
Homogenates of bovine adrenal medullae hydrolyzed exogenous sphingomyelin at 4.3 +/- 1.6 nmol X mg-1 X min-1 and 97% of this sphingomyelinase activity was sedimentable at 110,000 g. The sphingomyelinase had a broad pH optimum centered at pH 7. Enzymatic activity was maximal with 80 microM added Mn2+; Mg2+ supported less than half maximal activity and both Ca2+ and EDTA inhibited activity. No activity was detected in the absence of Triton X-100. Response to detergent was biphasic with dose-dependent stimulation from 0.02% to 0.05% Triton X-100 followed by inhibition with increasing concentrations of detergent. Activity in response to detergent was also modulated by protein concentration. Sphingomyelinase activity was associated with a plasma membrane-microsomal fraction. Phosphatidylcholine was not hydrolyzed under optimal conditions for sphingomyelin hydrolysis and a variety of other conditions. Neutral-active sphingomyelinase activity in adrenal medulla was similar in magnitude to that observed in other non-neural bovine tissues. This study demonstrates the presence of a potent neutral-active sphingomyelinase in a plasma membrane-microsomal fraction of bovine adrenal medulla. This enzyme may be involved in membrane fusion and lysis during catecholamine secretion through its ability to alter membrane composition.  相似文献   

3.
Most of the chicken erythrocyte's sphingomyelin is hydrolyzed when the chicken red blood cells are incubated in hypotonie solution at 37 °C.Addition of detergents, such as Triton X-100 or Na-cholate, is essential for hydrolysis of external [3H ]sphingomyelin by the erythrocyte membranes.Pure plasma membranes show relatively high sphingomyelinase activity while no activity could be detected in the soluble fraction of the cells. Mg2+ and Mn2+ activate the enzyme while Ca2+ and EDTA strongly inhibit its activity. The optimal pH of the membrane-bound sphingomyelinase lies between pH 7.0–9.0. The detergents Triton X-100 and Na-cholate, at concentrations of 0.5% (wv) solubilize the membrane-bound enzyme. Human erythrocytes fail to exhibit sphingomyelinase activity.The correlation between the sphingomyelinase activity and its localization is discussed.  相似文献   

4.
Liposomes of [3H]sphingomyelin are readily hydrolyzed by extracts of human spleen, liver, cultured skin fibroblasts and purified placental sphingomyelinase in the absence of detergents. The pH optimum for hydrolysis by liver and spleen extracts was 6.5-7.0 while the fibroblast activity showed an optimum at pH 4.0-4.3. However, the pH optimum for purified placental sphingomyelinase in the presence of Triton X-100 (pH 5.0) is only slightly different from that displayed with liposomes (pH 5.3). The data clearly show that hydrolysis of liposomal sphingomyelin by sphingomyelinase is affected by the composition and purity of the enzyme source.  相似文献   

5.
We have studied the localization of neutral sphingomyelinase (N-SMase) in rat liver nuclei. The levels of neutral sphingomyelinase in regenerating liver nuclei were also assessed.We found that rat liver nuclei contain a sphingomyelinase having a pH optima of 7.2 and a kDa of 92. In intact nuclei, neutral sphingomyelinase was associated predominantly with the nuclear envelope. In regenerating/proliferating rat liver (during DNA synthesis), neutral sphingomyelinase was translocated from the nuclear envelope to the nuclear matrix. The levels of sphingomyelin in whole nuclei decreased in reverse proportion to an increase in the levels of neutral sphingomyelinase. By contrast, there was a corresponding increase in the levels of ceramide and sphingosine during cell regeneration/proliferation. Thus, endogenous nuclear neutral sphingomyelinase may play a role in the regulation of sphingomyelin levels and in relevant signal transduction reactions involving cell regeneration/proliferation. The potential significance of ceramide generation may be aimed at programmed cell death to allow the regeneration of liver mediated via target proteins such as, ceramide activated protein kinases/phospholipases or other unknown mechanisms.Abbreviations N-SMase neutral sphingomyelinase - A-SMase acid sphingomyelinase  相似文献   

6.
Acid sphingomyelinase (A-SMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to phosphorylcholine and ceramide. Inherited deficiencies of acid sphingomyelinase activity result in various clinical forms of Niemann-Pick disease, which are characterised by massive lysosomal accumulation of sphingomyelin. Sphingomyelin hydrolysis by both, acid sphingomyelinase and membrane-associated neutral sphingomyelinase, plays also an important role in cellular signaling systems regulating proliferation, apoptosis and differentiation. Here, we present a potent and selective novel inhibitor of A-SMase, L-alpha-phosphatidyl-D-myo-inositol-3,5-bisphosphate (PtdIns3,5P2), a naturally occurring substance detected in mammalian, plant and yeast cells. The inhibition constant Ki for the new A-SMase inhibitor PtdIns3,5P2 is 0.53 microM as determined in a micellar assay system with radiolabeled sphingomyelin as substrate and recombinant human A-SMase purified from insect cells. Even at concentrations of up to 50 microM, PtdIns3,5P2 neither decreased plasma membrane-associated, magnesium-dependent neutral sphingomyelinase activity, nor was it an inhibitor of the lysosomal hydrolases beta-hexosaminidase A and acid ceramidase. Other phosphoinositides tested had no or a much weaker effect on acid sphingomyelinase. Different inositol-bisphosphates were studied to elucidate structure-activity relationships for A-SMase inhibition. Our investigations provide an insight into the structural features required for selective, efficient inhibition of acid sphingomyelinase and may also be used as starting point for the development of new potent A-SMase inhibitors optimised for diverse applications.  相似文献   

7.
A neutral sphingomyelinase which cleaves phosphorylcholine from sphingomyelin at a pH optima of 7.4 was purified 440-fold to apparent homogeneity from normal human urine concentrate employing Sephadex G-75 column chromatography, preparative isoelectric focusing, and sphingosylphospholcholine CH-Sepharose column chromatography. The enzyme is composed of a single polypeptide whose apparent molecular weight is 92,000. Analytical isoelectric focusing revealed that the pI of this enzyme is 6.5. Purified neutral sphingomyelinase was devoid of beta-galactosidase and beta-N-acetylglucosaminidase activity originally present in the urine concentrate. The purified neutral sphingomyelinase (N-SMase) had low levels of phospholipase A1 and A2 activity when phosphatidylcholine was used as a substrate and detergents were included in the assay mixture. However, it had no phospholipase activity toward phosphatidylglycerol and sphingomyelin at pH 4.5 irrespective of the presence or absence of detergents. Monospecific polyclonal antibodies raised against N-SMase immunoprecipitated approximately 70% of N-SMase activity from urine, human kidney proximal tubular cells, and partially purified membrane-bound N-SMase from these cells. Western immunoblot assays revealed that the monospecific polyclonal antibody against urinary N-SMase recognized both the urinary N-SMase and the membrane-bound N-SMase. Because this enzyme is distinct biochemically and immunologically as compared to acid sphingomyelinase (EC 3.1.4.12), we would like to assign it an enzyme catalog number of EC 3.1.4.13. The availability of N-SMase and corresponding antibody will be useful in studying various aspects of this enzyme in biological systems.  相似文献   

8.
Human placental acid sphingomyelinase was highly purified in the presence of Triton X-100. DEAE-Sephacel chromatography and chromatofocusing were the most effective steps in the purification procedure. Enzyme purification was 380,000 nmol/mg protein/h. Characterization and radioiodination were carried out with the chromatofocusing fraction containing highly purified enzyme. The purified enzyme contained no activity of eleven other lysosomal hydrolases but hydrolyzed bis-p-nitrophenyl phosphate slowly compared with [14C]sphingomyelin and chromogenic substrates. SDS-gel electrophoresis revealed two distinct protein bands with molecular weights of 70,500 and 39,800. This enzyme had a molecular weight of 200,000 as determined by analytical gel filtration. The pH optimum was 5.0 and Km was 52.6 x 10(-5) M for [14C]sphingomyelin. Highly purified sphingomyelinase was labeled with 125iodine by the use of Enzymobeads. Labeled sphingomyelinase preparation was rapidly cleared from blood with t1/2 of 1 min. It was absorbed mostly into the liver and presumably largely excreted from there. This labeled enzyme may be useful in metabolic studies in normal animals and animal models of genetic lysosomal storage disorders.  相似文献   

9.
Alzheimer's disease is a major illness of dementia characterized by the presence of amyloid plaques, neurofibrillary tangles, and extensive neuronal apoptosis. However, the mechanism behind neuronal apoptosis in the Alzheimer's-diseased brain is poorly understood. This study underlines the importance of neutral sphingomyelinase in fibrillar Abeta peptide-induced apoptosis and cell death in human primary neurons. Abeta1-42 peptides induced the activation of sphingomyelinases and the production of ceramide in neurons. Interestingly, neutral (N-SMase), but not acidic (A-SMase), sphingomyelinase was involved in Abeta1-42-mediated neuronal apoptosis and cell death. Abeta1-42-induced production of ceramide was redox-sensitive, as reactive oxygen species were involved in the activation of N-SMase but not A-SMase. Abeta1-42 peptides induced the NADPH oxidase-mediated production of superoxide radicals in neurons that was involved in the activation of N-SMase, but not A-SMase, via hydrogen peroxide. Consistently, superoxide radicals generated by hypoxanthine and xanthine oxidase also induced the activation of N-SMase, but not A-SMase, through a catalase-sensitive pathway. Furthermore, antisense knockdown of p22phox, a subunit of NADPH oxidase, inhibited Abeta1-42-induced neuronal apoptosis and cell death. These studies suggest that fibrillar Abeta1-42 peptides induce neuronal apoptosis through the NADPH oxidase-superoxide-hydrogen peroxide-NS-Mase-ceramide pathway.  相似文献   

10.
Ceramide and other sphingolipids are now recognized as novel intracellular signal mediators. One of the important and regulated steps in the metabolism of sphingolipids is the hydrolysis of sphingomyelin into ceramide by sphingomyelinases. Whereas some studies suggest a role for acid sphingomyelinase in cell regulation, several lines of investigation suggest that neutral sphingomyelinase (N-SMase) plays a critical role in stress responses including apoptosis. Recently the advanced purification of neutral membrane-bound magnesium-dependent sphingomyelinase from rat brain was reported on. The specific activity of the purified N-SMase was increased by approximately 3000-fold over the rat brain homogenate, and it is specifically activated by phosphatidylserine. In cells, N-SMase may be coupled to either the redox state and/or glutathione metabolism. The significance of N-SMase and ceramide in stress responses is discussed.  相似文献   

11.
A sphingomyelinase, which specifically hydrolyzes sphingomyelin into ceramide and phosphocholine, was solubilized from nuclear matrix fraction of rat ascites hepatoma, AH7974 cells. The solubilized enzyme was subjected to Mono Q column chromatography in an FPLC system. The sphingomyelinase which was adsorbed on the column and eluted at 0.25-0.5 M NaCl was characterized. The enzyme required 10 mM MgCl2, 0.01% Triton X-100, 1 mM dithiothreitol, and a higher concentration of buffer than 1 M for its maximal activity, and the optimal pH was 6.7-7.2 in 2 M Tris/acetic acid or 7.5 in 2 M potassium acetate/acetic acid. N-Ethylmaleimide completely inhibited the enzyme activity at 0.2 mM. Therefore, this enzyme is classified as a Mg2+-dependent, neutral sphingomyelinase. The sphingomyelinase sedimented at 4.3S through a 10-30% glycerol gradient containing 2 M potassium acetate. This enzyme was highly specific to sphingomyelin and did not hydrolyze phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Various characteristics of the nuclear sphingomyelinase were similar to those of the plasma membrane enzyme except its requirement for a high concentration of buffer and SH-reagent.  相似文献   

12.
We have characterised ceramidase activity in extracts of human spleen from control subjects and from patients with Gaucher disease. In Triton X-100 extracts of control spleens, a broad pH optimum of pH 3.5-5.0 was found; no ceramidase activity was detectable at neutral or alkaline pH. About 45-60% of acid ceramidase could be extracted from spleen without detergents, but for complete extraction, Triton X-100 was required. For the radiolabelled substrate oleoylsphingosine, a Km of 0.22 +/- 0.09 mM and a Vmax of 57 +/- 11 nmol/h per mg protein was calculated in spleen from a control subject. Flat-bed isoelectric focussing in the presence of Triton X-100 revealed a pI of 6.0-7.0 for acid ceramidase; similar values were found for sphingomyelinase and glucerebrosidase. HPLC-gel filtration indicated that in the presence of Triton X-100, acid ceramidase has an Mr of about 100 kDa. In the absence of detergents, the enzyme forms high-molecular-weight aggregates. Similar aggregation behaviour was observed for sphingomyelinase, while the elution of beta-hexosaminidase was not affected by detergents. The elution profile of glucocerebrosidase was only slightly altered by Triton X-100. There was no difference in the properties of acid ceramidase present in spleen from control subjects and from patients with type I Gaucher disease.  相似文献   

13.
Studies on the hydrophobic properties of sphingomyelinase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Crude liver lysosomal sphingomyelinase (EC 3.1.4.12) displays a heterogeneous electrofocusing profile. The majority of the enzyme resolves into two major components with acidic pI values near pH 4.6 and 4.8. Several additional minor peaks of activity are seen at more basic pH values (up to pH 8.0). In the presence of 0.1% Triton X-100 (or Cutscum), the location of sphingomyelinase is shifted by about 1 pH unit to more basic pH values. Triton X-100 also increases the apparent heterogeneity of sphingomyelinase. Removal of detergent by treatment with Bio Beads SM-2 restores the acidic pI profile. This behaviour appears to be specific, since it was not shared by six glycosidases several of which hydrolyse sphingolipids. The electrofocusing profile of 3H-labelled Triton X-100 was distinct and separate from sphingomyelinase, suggesting that only a small fraction of detergent interacted directly with the enzyme. To study this behaviour in more detail we examined the effect of detergents on elution of sphingomyelinase from sphingosylphosphocholine-Sepharose. Sphingosylphosphocholine is a competitive inhibitor of sphingomyelinase (Ki 0.5 mM). Binding of enzyme was pH-dependent. Triton X-100, Cutscum and Tween 20 eluted significant amounts of enzyme at 0.01-0.02%. Total elution was achieved with up to 0.1% detergent. These data suggest that sphingomyelinase binds to neutral detergent monomers with a high degree of affinity. In excess detergent (5-7 times the critical micellar concentration) the surface charge on the protein is changed, leading to a pI shift. This behaviour probably does not occur at the active site of the enzyme, since there is no appreciable effect on substrate hydrolysis and substrate analogues were ineffective in eluting the enzyme.  相似文献   

14.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

15.
The effects of gentamicin on phospholipid levels and metabolism and the uptake of phosphatidylcholine (PC) adsorbed to low-density lipoprotein (LDL) were investigated in cultured human proximal tubular (PT) cells. Cells incubated with gentamicin (0.3 mM) for one to 21 days had a similar increase in the cell number and protein as compared to control cells. However, the cellular levels of phosphatidylcholine (PC) and sphingomyelin (SM), but not other phospholipids, increased in a time-dependent manner. Incubation of gentamicin (0.3 to 3.0 mM) resulted in a concentration-dependent increase in the cellular levels of PC (50% to 320%) and SM (20% to 40%). Gentamicin stimulated the incorporation of [14C]-acetate into diacylglycerol, PC, and SM in the order of 300%, 66%, and 20%, respectively, but not into lysophosphatidylcholine (LPC). Similarly, gentamicin stimulated the incorporation of [14C]-choline into PC and SM in the order of 300% and 172%, respectively, but not into LPC as compared to control cells. In addition, gentamicin also stimulated the incorporation of [14C]-choline into cytidine diphosphocholine (CDP-choline). However, the endocytosis of [14C]-PC-LDL was lower in cells incubated with gentamicin than in control cells. Thus, exogenously derived PC on LDL does not contribute to the increased cellular levels of PC in PT cells incubated with gentamicin. The activity of cytidine triphosphate (CTP):phosphocholine cytidyltransferase was moderately lower in cells incubated with gentamicin as compared to control. By contrast, the activity of phospholipase A1 and phospholipase C was twofold lower in cells incubated with gentamicin for 21 days as compared to control. Thus, increased incorporation of [14C]-acetate and [14C]-choline into PC in cells incubated with gentamicin may not only be due to increased endogenous synthesis but to decreased catabolism of newly synthesized PC. We conclude that gentamicin impairs the lysosomal catabolism of PC, leading to its accumulation in PT cells. This phenomenon may be an indication of gentamicin-induced nephrotoxicity in man.  相似文献   

16.
Chan EC  Chang CC  Li YS  Chang CA  Chiou CC  Wu TZ 《Biochemistry》2000,39(16):4838-4845
Phospholipase activities of human gastric bacterium, Helicobacter pylori, are regarded as the pathogenic factors owing to their actions on epithelial cell membranes. In this study, we purified and characterized neutral sphingomyelinase (N-SMase) from the superficial components of H. pylori strains for the first time. N-SMase was purified 2083-fold with an overall recovery of 37%. The purification steps included acid glycine extraction, ammonium sulfate precipitation, CM-Sepharose, Mono-Q, and Sephadex G-75 column chromatography. Approximate molecular mass for the native N-SMase was around 32 kDa. When N-omega-trinitrophenylaminolauryl sphingomyelin (TNPAL-SM) was used as a substrate, the purified enzyme exhibited a K(m) of 6.7 microM and a V(max) of 15.6 nmol of TNPAL-sphingosine/h/mg of protein at 37 degrees C in 50 mM phosphate-buffered saline, pH 7.4. N-SMase reaches optimal activity at pH 7.4 and has a pI of 7.15. The enzyme activity is magnesium dependent and specifically hydrolyzed sphingomyelin and phosphatidylethanolamine. The enzyme also exhibits hemolytic activity on human erythrocytes. According to Western blot analysis, a rabbit antiserum against purified N-SMase from H. pylori cross-reacted with SMase from Bacillus cereus. Sera from individuals with H. pylori infection but not uninfected ones recognizing the purified N-SMase indicated that it was produced in vivo. In enzyme-linked immunosorbent assays, the purified N-SMase used as an antigen was as effective as crude protein antigens in detecting human antibodies to H. pylori.  相似文献   

17.
We have examined the hydrolysis of the synthetic phosphodiesters, bis(4-methylumbelliferyl)phosphate and hexadecanoyl(nitrophenyl)phosphorylcholine, by purified placental sphingomyelinase (sphingomyelin cholinephosphohydrolase, EC 3.1.4.12) in the presence of Triton X-100. Triton X-100 enhanced activity with bis(4MU)phosphate at all concentrations tested. At very low concentrations of detergent, bis(4MU)phosphate hydrolysis approached zero. Our results indicate that bis(4MU)phosphate does not form a micelle with Triton X-100. The observed enhancement of bis(4MU)phosphate activity with Triton X-100 is likely due to a direct effect of detergent on the enzyme itself. HDNP-phosphorylcholine formed its own micelle (or liposome) in the absence of Triton X-100 and, at substrate concentrations below 4 mM, hydrolysis was inhibited by Triton X-100. The extent of this inhibition varied with detergent concentrations but could be totally eliminated at substrate values above 4 mM. For theoretical reasons kinetic constants which could be obtained with the HDNP-phosphorylcholine substrate at concentrations above 4 mM are not considered to be truly representative of the real values. We conclude that neither substrate is recommended to describe the true kinetic parameters pertaining to purified sphingomyelinase. In addition, bis(4MU)phosphate may not be suitable as an aid for diagnosis of sphingomyelinase deficiency states.U  相似文献   

18.
S Yedgar  S Gatt 《Biochemistry》1976,15(12):2570-2573
Mixed dispersions of the nonionic detergent Triton X-100 and sphingomyelin were used as substrate for sphingomyelinase of rat brain. The dependence of the rate of hydrolysis on the concentration of sphingomyelin was measured in two ways: at a fixed concentration of Triton X-100 or at varying concentrations of this detergent, while maintaining a fixed molar ratio of Triton X-100 to sphingomyelin. In either case, the upsilon vs. S curves deviated from the hyperbolic shape predicted by the Michaelis-Menten kinetic theory. These deviations are discussed and interpreted on the basis of the physicochemical properties of the mixed dispersions of detergent and lipid studied in previous papers.  相似文献   

19.
20.
Previous studies demonstrated that hen erythrocytes have an inoperative, latent sphingomyelinase which is activated when the cells are hemolyzed in a hypotonic medium. Within minutes after hemolysis about 60-80% of the sphingomyelin (SPM) of the RBC "ghost" membrane was hydrolyzed. In this paper, expression of sphingomyelinase activity was further investigated. The percentage of total SPM hydrolyzed depended on the volume of the hypotonic hemolyzing buffer. Thus, suspending the erythrocytes in 4 vol of the buffer resulted in clumping of the hemolyzed "ghosts" and no hydrolysis of SPM. In comparison, suspension in 19 vol of the hypotonic buffer showed no clumping and sphingomyelinase activity was fully expressed. But centrifugation of the latter or, alternatively, addition of concanavalin A induced clumping and elimination of sphingomyelinase activity. Hen RBC could also be hemolyzed in an isotonic medium in the presence of Triton X-100, mellitin, halothane, and phospholipase C. Activation of the latent sphingomyelinase occurred at concentrations of these reagents which caused cell lysis. Hen RBC were dispersed in an isotonic medium containing glutaraldehyde (0.1%) or formaldehyde (10%). This rendered the cells resistant to hemolysis, even when subsequently dispersed in a hypotonic medium or water. But incubation of the "fixed" cells in a hypotonic or isotonic medium activated the enzyme, resulting in hydrolysis of 60% of the cellular SPM. In contrast, when glutaraldehyde was included in the hypotonic buffer, hemolysis occurred but sphingomyelinase activity was eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号