首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The applicability of plasmid pNB2 for bioaugmentation of bacteria in model wastewater treatment reactors receiving 3-chloroaniline (3-CA) was investigated. METHODS AND RESULTS: A setup of three biofilm reactors was studied, all initially inoculated with bacteria from activated sludge. Reactor PB received a Pseudomonas putida pNB2 donor strain not able to degrade 3-CA. Positive control reactor P received a 3-CA degrading Comamonas testosteroni pNB2-transconjugant. The negative control reactor N remained unchanged. Reactor P showed 3-CA degradation from the beginning of the experiment whereas in reactor PB, degradation started after an initial lag period. No degradation was observed in reactor N. PCR analysis showed that the P. putida donor abundance dropped in reactor PB, whereas the plasmid abundance did not, indicating transfer to other bacteria. A number of different 3-CA degrading C. testosteroni strains carrying pNB2 could be isolated from reactor PB. CONCLUSIONS: A successful plasmid-mediated bioaugmentation was achieved with C. testosteroni being the dominant 3-CA degrading pNB2 transconjugant species active in reactor PB. SIGNIFICANCE AND IMPACT OF THE STUDY: The study underlines the potential of gene transfer to contribute to establishment and spread of genetic information in general, particularly emphasizing the spread of xenobiotic degrading potential by dissemination of catabolic genes.  相似文献   

2.
【背景】煤化工企业排放的废水中含有大量难降解、高毒性的有机污染物,采用以高效降解菌为基础的生物强化技术对其进行处理,是一种经济可行的策略;而促进高效降解菌在载体材料表面的生物膜形成,有助于提升生物膜法废水处理系统的效能。【目的】探究一株吡啶高效降解菌Pseudomonas sp. ZX08的生物膜形成过程和特性,识别不同的环境因子如温度、pH、Na+、K+、Ca2+、Mg2+等对其生物膜形成的影响规律,为实现人工调控其在实际废水处理系统中的成膜过程提供理论依据。【方法】采用改良的微孔板生物膜培养与定量方法,以单因子影响实验测定不同条件下菌株在12孔板内的生物膜形成量和浮游态细菌量;采用激光共聚焦显微镜(confocallaserscanning microscope,CLSM)观察和分析生物膜的结构特征。【结果】Pseudomonas sp. ZX08菌株具有良好的吡啶降解性能,且生物膜形成能力较强,CLSM观察到其在载体表面形成的生物膜可达40-50mm;生物膜外层的活细胞比例更高,分泌的胞外蛋白...  相似文献   

3.
To improve phosphorus removal from wastewater, we constructed a high-phosphate-accumulating microorganism, KTPPK, using Pseudomonas putida KT2440 as a host. The expression plasmid was constructed by inserting and expressing polyphosphate kinase gene (ppk) from Microcystis aeruginosa NIES-843 into broad-host-range plasmid, pBBR1MCS-2. KTPPK was then added to a sequencing batch biofilm reactor (SBBFR) using lava as a biological carrier. The results showed that SBBFR with KTPPK not only efficiently removed COD, NH(3)-N, and NO(3)(-)-N but also had a high removal capacity for PO(4)(3-)-P, resulting in a low phosphorus concentration remaining in the outflow of the SBBFR. The biofilm increased by 30-53% on the lava in the SBBFR that contained KTPPK after 11 days when compared with the reactor that contained P. putida KT2440. Real-time quantitative polymerase chain reaction confirmed that the copy of ppk was maintained at about 3.5 × 10(10) copies per μL general DNA in the biofilm after 20 days. Thus, the transgenic bacteria KTPPK could maintain a high density and promote phosphorus removal in the SBBFR. In summary, this study indicates that the use of SBBFR with transgenic bacteria has the potential to remove phosphorus and nitrogen from wastewater.  相似文献   

4.
There is limited knowledge of interspecies interactions in biofilm communities. In this study, Pseudomonas sp. strain GJ1, a 2-chloroethanol (2-CE)-degrading organism, and Pseudomonas putida DMP1, a p-cresol-degrading organism, produced distinct biofilms in response to model mixed waste streams composed of 2-CE and various p-cresol concentrations. The two organisms maintained a commensal relationship, with DMP1 mitigating the inhibitory effects of p-cresol on GJ1. A triple-labeling technique compatible with confocal microscopy was used to investigate the influence of toxicant concentrations on biofilm morphology, species distribution, and exopolysaccharide production. Single-species biofilms of GJ1 shifted from loosely associated cell clusters connected by exopolysaccharide to densely packed structures as the p-cresol concentrations increased, and biofilm formation was severely inhibited at high p-cresol concentrations. In contrast, GJ1 was abundant when associated with DMP1 in a dual-species biofilm at all p-cresol concentrations, although at high p-cresol concentrations it was present only in regions of the biofilm where it was surrounded by DMP1. Evidence in support of a commensal relationship between DMP1 and GJ1 was obtained by comparing GJ1-DMP1 biofilms with dual-species biofilms containing GJ1 and Escherichia coli ATCC 33456, an adhesive strain that does not mineralize p-cresol. Additionally, the data indicated that only tower-like cell structures in the GJ1-DMP1 biofilm produced exopolysaccharide, in contrast to the uniform distribution of EPS in the single-species GJ1 biofilm.  相似文献   

5.
【背景】细菌生物膜在废水处理领域显示出良好的前景,但目前应用于海水养殖水体处理的菌株主要源自淡水菌株,存在难以适应海水高盐环境的问题。源自红树林的海洋着色菌(Marichromatiumgracile)YL28应用于海水养殖水体处理,不仅具有高效除氮能力,而且趋光贴壁能力很强。【目的】阐明海洋着色菌(Marichromatium gracile) YL28的生物膜形成特性和规律,以期为海水养殖水体生物膜反应系统的开发和应用提供参考。【方法】以生物膜和游离菌体生物量、脱氢酶活性、生物膜多糖含量和蛋白含量、无机三态氮去除活性为测定指标,在光照厌氧环境中研究海洋着色菌YL28菌株的生物膜形成规律、生物活性和脱氮效果。【结果】随着时间延长,4 000 lx光照时游离菌体生物量逐渐升高,但在稳定期前快速降低,而成膜生物量经过延滞期后逐渐升高并趋于稳定,表明培养过程中游离菌体能趋光贴壁生长并形成生物膜。在0-5 000 lx光照范围内培养4 d,低光照强度(500 lx)时成膜率(71.21%)最高,1 000-4 000 lx光照强度下成膜率虽然不是最高(54.64%-68.66%),但适宜菌体成膜,膜生物量干重达到0.60-0.80 mg/cm2。除了5 000 lx光照对成膜菌体脱氢酶活性有不利影响外,成膜菌体和游离菌体脱氢酶活性随光照强度升高而升高,而且没有明显差异。生物膜的形成会导致光反应器内部光照受限,但反应器内部游离菌体的脱氢酶活性并没有降低,由此表明,培养液中的菌体主要在生物膜及其界面生长并游离扩散至培养液中。随光照强度(1 000-5 000 lx)和培养时间(4-10 d)的变化,胞外复合物(Extracellularpolymericsubstances,EPS)中蛋白含量变异较大,多糖含量变化较小;随时间延长,蛋白含量升高,其中3 000 lx时蛋白含量最高;4 000 lx时生物膜菌体与游离菌体脱氮活性相比,单位质量菌体的氨氮和亚硝氮去除活性未受到明显影响,而硝氮去除活性有所降低。【结论】海洋着色菌YL28具有良好的生物膜形成能力,其成膜过程主要是菌体趋光贴壁生长成膜,成膜菌体具有良好的脱氮活性,这为利用生物膜系统消除海水养殖水体氮污染奠定了基础。  相似文献   

6.
Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.  相似文献   

7.
AIMS: The involvement of the aniline-degradative plasmid pNB2 in degradation of 3-chloroaniline (3-CA) was investigated. METHODS AND RESULTS: Plate matings of a Pseudomonas putida strain containing pNB2 with a mixed bacterial culture derived from activated sludge was carried out. After inoculation of the mating mixtures into batch cultures containing 3-CA, degradation of the compound was observed. A total of five different transconjugant strains could be isolated from one of the batch cultures and two of them were able to degrade 3-CA. These two isolates were identified as Comamonas testosteroni by partial 16S rDNA sequencing. CONCLUSIONS: It can be assumed that pNB2 carries a part of the genes involved in the catabolism of 3-CA, but that completion of the pathway must be provided by chromosomal genes in the host strain. SIGNIFICANCE AND IMPACT OF THE STUDY: pNB2 is a candidate plasmid which can be used in plasmid-mediated bioaugmentation of wastewater bacteria involved in degradation of chlorinated anilines.  相似文献   

8.
The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.  相似文献   

9.
A method was developed to detect a specific strain of bacteria in wheat root rhizoplane using fluorescence in situ hybridization and confocal microscopy. Probes targeting both 23S rRNA and messenger RNA were used simultaneously to achieve detection of recombinant Pseudomonas putida (TOM20) expressing toluene o-monooxygenase (tom) genes and synthetic phytochelatin (EC20). The probe specific to P. putida 23S rRNA sequences was labeled with Cy3 fluor, and the probe specific to the tom genes was labeled with Alexa647 fluor. Probe specificity was first determined, and hybridization temperature was optimized using three rhizosphere bacteria pure cultures as controls, along with the P. putida TOM20 strain. The probes were highly specific to the respective targets, with minimal non-specific binding. The recombinant strain was inoculated into wheat seedling rhizosphere. Colonization of P. putida TOM20 was confirmed by extraction of root biofilm and growth of colonies on selective agar medium. Confocal microscopy of hybridized root biofilm detected P. putida TOM20 cells emitting both Cy3 and Alexa647 fluorescence signals.  相似文献   

10.
An environmentally representative stagnant-water model was developed to monitor the growth dynamics of Legionella pneumophila. This model was evaluated for three distinct water treatments: untreated tap water, heat-treated tap water, and heat-treated tap water supplemented with Pseudomonas putida, a known biofilm-forming bacterium. Bringing heat-treated tap water after subsequent cooling into contact with a densely formed untreated biofilm was found to promote the number of L. pneumophila by 4 log units within the biofilm, while the use of untreated water only sustained the L. pneumophila levels. Subsequent colonization of the water phase by L. pneumophila was noticed in the heat-treated stagnant-water models, with concentrations as high as 1 x 10(10) mip gene copies L(-1) stagnant water. Denaturing gradient gel electrophoresis in combination with clustering analysis of the prokaryotic community in the water phase and in the biofilm phase suggests that the different water treatments induced different communities. Moreover, boosts of L. pneumophila arising from heat treatment of water were accompanied by shifts to a more diverse eukaryotic community. Stimulated growth of L. pneumophila after heating of the water may explain the rapid recolonization of L. pneumophila in water systems. These results highlight the need for additional or alternative measures to heat treatment of water in order to prevent or abate potential outbreaks of L. pneumophila.  相似文献   

11.
As a result of the determination of dimethyl sulfide (DMS) oxidizing activity of bacterial aromatic compound oxygenases, multicomponent monooxygenases (DmpKLMNOP from Pseudomonas sp. CF600, AphKLMNOP from Comamonas testosteroni TA441, and TodABCDEF from Pseudomonas sp. JS150), single component monooxygenases (TfdB from Pseudomonas putida EST4011 and XylMA from Pseudomonas putida mt-2), and dioxygenases (CumA1A2A3A4 from Pseudomonas fluorescens IP01 and PahAaAbAcAd from Pseudomonas putida OUS82) showed DMS-oxidizing activity, while CarAaAcAd from Pseudomonas sp. CA10 and SoxC from Rhodococcus sp. IGTS8 did not. These results indicate the possibilities that these oxygenases might oxidize DMS to DMSO under the natural condition in the environment.Present address: Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan  相似文献   

12.
[背景]猪源肠外致病性大肠埃希氏菌(extraintestinal pathogenic Escherichia coli,ExPEc)是一种严重危害养猪业的病原菌,有关其生物膜形成能力与耐药性的研究报道很少。[目的]探讨从病猪肺脏中分离鉴定的3株ExPEc的生物膜形成能力及耐药性,为从抗生物膜形成角度防治猪肠外大肠埃希氏菌病提供参考。[方法]采用96孔板结晶紫染色法结合正交实验优化猪源ExPEc分离株的生物膜形成最佳条件与成膜能力;通过扫描电镜观察各菌株生物膜的形态结构;利用PCR方法检测其携带的生物膜形成相关基因;采用微量肉汤稀释法测定抗生素对生物膜态与浮游态下猪源ExPEc分离株的最小抑菌浓度(minimum inhibitory concentration,MIC)。[结果]3株猪源ExPEc的最佳成膜条件并不一致,但在各自最佳条件下均能形成很强的生物被膜且同时携带10个生物膜形成相关基因(pgaA,pgaB,pgaC,pgaD,luxS,fimA,hipA,iha,flhC,flhD)。扫描电镜观察显示,菌株SE-1聚集后可形成片状生物膜,菌株SE-2和SE-3聚集后可形成多...  相似文献   

13.
1) A bacterium capable of growing aerobically with caffeine (1,3,7-trimethylxanthine) as sole source of carbon and nitrogen was isolated from soil. The morphological and physiological characteristics of the bacterium were examined. The organism was identified as a strain of Pseudomonas putida and is referred to as Pseudomonas putida C1. 15 additional caffeine-degrading bacteria were isolated, and all of them were also identified as Pseudomonas putida strains. The properties of the isolates are discussed in comparison with 6 Pseudomonas putida strains of the American Type Culture Collection. 2) The degradation of caffeine by Pseudomonas putida C1 was investigated; the following 14 metabolites were identified: 3,7-dimethylxanthine (theobromine), 1,7-dimethylxanthine, 7-methylxanthine, xanthine, 3,7-dimethyluric acid, 1,7-dimethyluric acid, 7-methyluric acid, uric acid, allantoin, allantoic acid, ureidoglycolic acid, glyoxylic acid, urea, and formaldehyde. Formaldehyde has been demonstrated to be the product of oxidative N-demethylation mediated by an inducible demethylase. A pathway of caffeine degradation is proposed.  相似文献   

14.
This study aimed to develop technology enhancing the biodegradation efficacy against organophosphorus fungicide with biofilm-forming bacteria in situ. Using the crystal violet staining method, two bacterial strains having biofilm formation capability were isolated and identified as Pseudomonas sp. C7 and Bacillus sp. E5. Compared with the culture of tolclofos-methyl degrader Sphingomonas sp. 224, biofilm formation was improved by co-inoculation with biofilm-forming bacterium Bacillus sp. E5. Evaluated in liquid culture conditions, this two-species mixed consortium was observed to degrade tolclofos-methyl more effectively than Sphingomonas sp. 224 alone, with an approximately 90% degradation efficiency within 48 h of dosing. The improved effectiveness of the consortium biofilm was reflected using soil in situ with an approximately 7% increased degradation ratio over Sphingomonas sp. 224 alone. This is the first report demonstrating improved bioremediation degradation efficacy against tolclofos-methyl exhibited by a consortium biofilm. This work presents a possible effective bioremediation strategy using a specific biofilm composition against pollutants containing organophosphorus compounds in situ.  相似文献   

15.
AIMS: To investigate the biofilm-forming capacity and the production of quorum signals in Gram-negative bacteria isolated from a food production environment, and the possible correlation between both phenotypes. METHODS AND RESULTS: Sixty-eight Gram-negative bacteria were isolated from equipment and working surfaces in a raw vegetable processing line, and tested for biofilm-forming capacity using an in vitro microplate assay. All isolates showed significantly higher biofilm-forming capacity than Escherichia coli laboratory strain DH5alpha, which was included as a negative control, and differed up to 56-fold in relative biofilm-forming capacity. Various assays based on reporter bacteria were used to detect quorum signals produced by the isolates. Twenty-six isolates produced autoinducer-2, five isolates produced N-acyl-homoserine lactones (AHLs), and none produced the Pseudomonas quinolone signal. CONCLUSIONS: No correlation was found between in vitro biofilm-forming capacity and production of quorum signalling molecules among the 68 strains isolated from the raw vegetable processing line. SIGNIFICANCE AND IMPACT OF THE STUDY: Several recent studies have shown a role of AHL-based quorum sensing in biofilm formation of specific Gram-negative bacterial strains. The current work shows that production of AHL and other quorum signals is not widespread in Gram-negative isolates from a raw vegetable processing line, and is not a general requirement for biofilm formation, at least in vitro.  相似文献   

16.
Cooperation peaks at intermediate disturbance   总被引:1,自引:0,他引:1  
Explaining cooperation is a challenge for evolutionary biology. Surprisingly, the role of extrinsic ecological parameters remains largely unconsidered. Disturbances are widespread in nature and have evolutionary consequences. We develop a mathematical model predicting that cooperative traits most readily evolve at intermediate disturbance. Under infrequent disturbance, cooperation breaks down through the accumulation of evolved cheats. Higher rates of disturbance prevent this because the resulting bottlenecks increase genetic structuring (relatedness) promoting kin selection for cooperation. However, cooperation cannot be sustained under very frequent disturbance if population density remains below the level required for successful cooperation. We tested these predictions by using cooperative biofilm formation by the bacterium Pseudomonas fluorescens. The proportion of biofilm-forming bacteria peaked at intermediate disturbance, in a manner consistent with model predictions. Under infrequent and intermediate disturbance, most bacteria occupied the biofilm, but the proportion of cheats was higher under less frequent disturbance. Under frequent disturbance, many bacteria did not occupy the biofilm, suggesting that biofilm dwelling was not as beneficial under frequent versus intermediate disturbance. Given the ubiquity of disturbances in nature, these results suggest that they may play a major role in the evolution of social traits in microbes.  相似文献   

17.
Constitutive synthesis of enzymes responsible for methyl group oxidation in 3,5-xylenol degradation and an associated p-cresol methylhydroxylase in Pseudomonas putida NCIB 9869 was shown by their retention at high specific activities in cells transferred from 3,5-xylenol medium to glutamate medium. The specific activities of other enzymes of the 3,5-xylenol pathway declined upon removal of aromatic substrate, consistent with their inducible control. Specific activities of the methyl-oxidizing enzymes showed an eventual decline concomitant with a decrease in the fraction of bacteria capable of growth with 3,5-xylenol; a simultaneous loss of the ability to grow with m-hydroxybenzoate was also observed. The property of 3,5-xylenol utilization could be transferred to another strain of P. putida. It is proposed that enzymes of the 3,5-xylenol pathway and those for conversion of p-cresol to p-hydroxybenzoate are plasmid encoded, that the early methyl-oxidizing enzymes are expressed constitutively, and that the later enzymes are inducible.  相似文献   

18.
We have determined the primary structure of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. The enzyme is a dimeric protein of two identical subunits, each consisting of a polypeptide chain of 131 residues and a Mr = 14,536. The intact S-carboxymethyl protein was sequenced from the NH2 terminus using standard automated Edman degradation and automated Edman degradation using fluorescamine treatment at known prolines to suppress background. The isomerase was fragmented using CNBr, trypsin, iodosobenzoic acid, and acid cleavage at aspartyl-prolyl peptide bonds. The peptides resulting from each fragmentation were separated by reversed-phase high performance liquid chromatography and sequenced by automated Edman degradation. The full sequence was deduced by the overlapping of the various peptides. A search for homologous proteins was performed. Only the oxosteroid isomerase from Pseudomonas testosteroni, an expected homology, was found to be similar. Comparison of the two proteins shows that the region of strongest homology is the region containing the aspartic acid at which steroidal affinity and photoaffinity reagents have been shown to react in the P. testosteroni isomerase. The P. putida isomerase contains 3 cysteines and 2 tryptophans, whereas the P. testosteroni isomerase lacks these amino acids. The two proteins are not highly conserved.  相似文献   

19.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

20.
Derivatives of Pseudomonas sp. B13 which had acquired the capability to utilize 4-chloro- and 3,5-dichlorobenzoate as a consequence of the introduction of genes of the TOL plasmid of Pseudomonas putida mt-2 were studied. The utilization of these substrates, a property not shared by the parent strains, was shown to depend upon the combined activities of enzymes from the donor and from the recipient. During growth on 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate, predominantly the toluate 1,2-deoxygenase and both dihydrodihydroxybenzoate dehydrogenases of the parent strains were induced. On the other hand, no catechol 2,3-dioxygenase from P. putida mt-2 was detectable, so that degradation of chlorocatechols by the nonproductive meta-cleavage pathway was avoided. Instead of that, chlorocatechols were subject to ortho cleavage and totally degraded by the preexisting enzymes of Pseudomonas sp. B13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号