首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human U1 small nuclear RNA is encoded by approximately 30 gene copies. All of the U1 genes share several kilobases of essentially perfect flanking homology both upstream and downstream from the U1 coding region, but remarkably, for many U1 genes excellent flanking homology extends at least 24 kilobases upstream and 20 kilobases downstream. Class I U1 RNA pseudogenes are abundant in the human genome. These pseudogenes contain a complete but imperfect U1 coding region and possess extensive flanking homology to the true U1 genes. We mapped four class I pseudogenes by in situ hybridization to the long arm of chromosome 1, bands q12-q22, a region distinct from the site on the distal short arm of chromosome 1 to which the U1 genes have been previously mapped (Lund et al., Mol. Cell. Biol. 3:2211-2220, 1983; Naylor et al., Somat. Cell Mol. Genet. 10:307-313, 1984). We confirmed our in situ hybridization results by genomic blotting experiments with somatic cell hybrid lines with translocation products of human chromosome 1. These experiments provide further evidence that class I U1 pseudogenes and the true U1 genes are not interspersed. The results, along with those published elsewhere (Bernstein et al., Mol. Cell. Biol. 5:2159-2171, 1985), suggest that gene amplification may be responsible for the sequence homogeneity of the human U1 gene family.  相似文献   

3.
DNA length polymorphism in the 5'-flanking region of the human insulin gene has been reported by Bell et al. (1981), Rotwein et al. (1981), and Owerbach and Nerup (1982). Bgl I digestions of human DNA that have been hybridized to an insulin probe using the Southern technique shows that there are two distinct groups of 5'-flanking lengths: one being shorter than 3.6 kilobases (kb) and the other being longer than 4.3 kb. The insulin genes with the former length are denoted as A1, and those with the latter as A2. Using these data and demographic data of diabetes, it is estimated that, when the fitness of A1 A2 individual was taken as unity, the amounts of fitness reduction for A1 A1 was 6.5 X 10(-6) and that for A2 A2 was -5.6 X 10(-6). Because of these small magnitudes of selection, the changes in population incidences of insulin-dependent diabetes and noninsulin-dependent diabetes are not affected much by the polymorphism in the 5'-flanking region of the insulin gene.  相似文献   

4.
A minigene version of the human gene for the pro alpha(I) chain of type I procollagen (COL1A1) was prepared that contained -2.3 kilobases of the 5'-flanking sequence, the first 5 exons and introns, the last 6 exons and introns, and about 2 kilobases of the 3'-flanking sequence. The gene was then used for stable transfection experiments with mouse NIH 3T3 fibroblasts. Because the products of the minigene were shorter, it was possible to compare expression of the minigene with expression of the endogenous pro alpha 1 (I) gene by Northern and Western blot analyses. The results demonstrated that the construct contained enough of the gene to obtain high levels of expression in many of the stably transfected cells. Since previous observations suggested that the first intron of the pro alpha 1 (I) gene contained important cis-regulatory elements, two versions of the minigene were prepared in which most of the first intron was deleted. Comparison of expression of the minigene with expression of two deleted versions of the same gene established that 85% of the total sequences in the first intron are not essential for high levels of expression of the gene in stably transfected mouse fibroblasts.  相似文献   

5.
Insulin-like growth factor I (IGF-I) plays a major role in mammalian growth and regenerative processes as a mediator of many of the biological effects of growth hormone. We have demonstrated recently that the human IGF-I gene is transcribed and processed into distinct messenger RNA molecules, each of which directs the synthesis of unique IGF-I-containing peptides. As a means to determine whether a similar model of IGF-I gene organization and expression is the paradigm in mammals and as an initial step in devising experimental approaches to the study of regulation of IGF-I biogenesis, we have isolated and characterized the rat IGF-I gene. The rat gene, like its human counterpart, is very large, extending over at least 73 kilobases, and is composed of five exons subdivided by four introns. As in the human example, the rat IGF-I gene hybridizes to several messenger RNAs: 0.8-1.2, 1.6-2.1, and 7.8 kilobases. There is extensive nucleotide and amino acid sequence conservation between the two genes. The predicted mature rat IGF-I protein is identical to the human peptide in 67 of 70 residues. A comparably high degree of amino acid sequence identity is also found for both the amino- and carboxyl-terminal extension peptides, suggesting that, like mature IGF-I, the extension molecules may have physiological function.  相似文献   

6.
7.
8.
9.
The human major histocompatibility complex (MHC), on the short arm of chromosome 6, represents one of the most extensively characterised regions of the human genome. This approximately 4 Mb segment of DNA contains genes encoding the polymorphic MHC class I and class II molecules which are involved in antigen presentation during an immune response. Recently the whole of the MHC has been cloned in cosmids and/or yeast artificial chromosomes (YACs) and large portions have been characterised for the presence of novel genes. Many unrelated genes, both housekeeping and tissue specific, have been identified and the gene density in some regions is now approaching one gene every few kilobases. Some of the novel genes encode proteins involved in the intracellular processing and transport of antigens that are presented by MHC class I molecules. Others, however, have no obvious role in the immune response. The MHC is located in the chromosome band 6p21.3 which is a Giemsa (G)-light band. The detection of such a large number of functional genes (at least 70) in this region is compatible with the idea that both housekeeping and tissue-specific genes are localised predominantly in G-light bands.  相似文献   

10.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

11.
12.
13.
NTAK (neural- and thymus-derived activator for the ErbB kinase, neuregulin-2) is a novel member of the epidermal growth factor (EGF) family. We have isolated and characterized the human NTAK gene, comprising 12 exons spanning in excess of 55 kilobases (kb). The 7. 0kb long mRNA of the human NTAK gene was expressed in the human neuroblastoma SK-N-SH cell line with two alternative isoforms detected. Furthermore, six isoforms have been identified from rat brain and PC-12 cells. Although the alpha isoform of the NTAK gene was found to be expressed in all tissues including brain, the beta isoform was expressed only in rat brain tissues. Potential regulatory regions included consensus binding sites for AP-2, TF-IIIA, Sp-1, and YY-1 located in the 5'-flanking region of the NTAK gene.  相似文献   

14.
15.
16.
A cDNA that encodes a third type of human thyroid hormone receptor (hTR alpha 1) has been isolated from a skeletal muscle library. The cDNA encodes a 410 amino acid protein, Mr = 46,820. When expressed and translated in vitro, hTR alpha 1 binds T3 with an association constant (ka) of 1.8 x 10(9) M-1. Comparison of the DNA sequence of hTR alpha 1 and a previously identified alpha type thyroid hormone receptor (hTR alpha 2) suggests that they could be transcribed from the same gene, and that alternative RNA splicing results in the synthesis of either hTR alpha 1 or hTR alpha 2. Two mRNA (3.2 kilobases and 6 kilobases) of hTR alpha 1 have been detected in several tissues. At least three types of thyroid hormone receptors (hTR alpha 1, alpha 2, beta), which possess similar affinities for hormone ligands, can be expressed in the same tissue.  相似文献   

17.
18.
19.
We cloned a new functional ALDH gene (ALDHx) from a human genomic library in cosmid pWE-15 by screening with a 29-nucleotide probe partially matched to a conserved region of the ALDH1 and ALDH2 genes. The new ALDHx gene does not contain introns in the coding sequence for 517 amino acid residues. The degree of resemblance between the deduced amino acid sequences of the new ALDHx gene and the ALDH2 gene is 72.5% (alignment of 517 amino acid residues), while that between the ALDHx and the ALDH1 gene is 64.6% (alignment of 500 amino acid residues). The amino acid residues (Cys-162, Cys-302, Glu-268, Glu-487, Gly-223, Gly-225, Gly-229, Gly-245 and Gly-250), which exist in both ALDH1 and ALDH2 isozymes and have been implicated in functional and structural importance, are also preserved in the deduced sequence of the new ALDHx gene. Northern blot hybridization with ALDHx probe revealed the existence of a unique mRNA band (3.0 kilobases) in the human liver and testis tissues. Using the new ALDHx probe, we cloned the cDNA of the gene from a human testis cDNA library in lambda gt11 vector. The nucleotide sequence of the cDNA differs from that of the genomic sequence at three nucleotide positions resulting in the exchange of 2 deduced amino acid residues. These positions are polymorphic as further demonstrated by the PCR amplification of the targeted region followed by nucleotide sequence analysis of the genomic DNA from eight unrelated individuals. Alignment of the genomic and cDNA sequence indicates that although the ALDHx gene appears to have no intron in its coding sequence, an intron of 2.6 kilobases is found to interrupt the 5'-untranslated (5'-UT) sequence. Primary extension and S1 mapping analysis indicate the existence of at least two 5'-UT exons. The new ALDHx gene was assigned to chromosome 9 by Southern blot hybridization of DNA samples from a panel of rodent-human hybrid cell lines.  相似文献   

20.
The Type I (mineralocorticoid) receptor has identical affinities in vitro for cortisol and aldosterone. It has been suggested that the selective role of aldosterone in regulating sodium homeostasis relies on the microsomal enzyme 11 beta-hydroxysteroid dehydrogenase (11-HSD). This enzyme converts cortisol to its inactive metabolite, cortisone, preventing cortisol from binding to the Type I receptor. We have isolated human cDNA clones encoding 11-HSD from a human testis cDNA library by hybridization with a previously isolated rat 11-HSD cDNA clone. The cDNA contains an open reading frame of 876 bases, which predicts a protein of 292 amino acids. The sequence is 77% identical at the amino acid level to rat 11-HSD cDNA. The mRNA is widely expressed, but the level of expression is highest in the liver. Hybridization of the human 11-HSD cDNA to a human-hamster hybrid cell panel localized the single corresponding HSD11 gene to chromosome 1. This gene was isolated from a chromosome 1 specific library using the cDNA as a probe. HSD11 consists of 6 exons and is at least 9 kilobases long. The data developed in this study should be applicable to the study of patients with hypertension due to apparent mineralocorticoid excess, a deficiency in 11-HSD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号