首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
5.
6.
7.
Seong KM  Baek JH  Yu MH  Kim J 《FEBS letters》2007,581(13):2567-2573
The 26S proteasome, composed of the 20S core and 19S regulatory complexes, is important for the turnover of polyubiquitinated proteins. Each subunit of the complex plays a special role in proteolytic function, including substrate recruitment, deubiquitination, and structural contribution. To assess the function of some non-essential subunits in the 26S proteasome, we isolated the 26S proteasome from deletion strains of RPN13 and RPN14 using TAP affinity purification. The stability of Gcn4p and the accumulation of ubiquitinated Gcn4p were significantly increased, but the affinity in the recognition of proteasome was decreased. In addition, the subcomplexes of the isolated 26S proteasomes from deletion mutants were less stable than that of the wild type. Taken together, our findings indicate that Rpn13p and Rpn14p are involved in the efficient recognition of 26S proteasome for the proteolysis of ubiquitinated Gcn4p.  相似文献   

8.
9.
10.
Question: We present a study of positive and negative interactions between the invasive grass Schismus barbatus (Poaceae) and Ambrosia dumosa (Asteraceae). Ambrosia facilitates seedling establishment, and such facilitation may accelerate invasion of exotic species, which, in turn, may reduce establishment of native plants. Location: Joshua Tree National Park, California, USA. Methods: During 2003‐2004, we used field surveys to characterize the natural spatial distribution of Schismus in relation to native shrubs, and experimentally manipulated seed rain of Ambrosia and Schismus at three distances from adult Ambrosia canopies. We measured percentage germination and individual performance of both species. Field data were complemented by a greenhouse experiment that measured competition between Ambrosia seedlings and Schismus planted at three densities and five relative abundances under controlled conditions. Results: Field surveys showed that the density of Schismus is independent of Ambrosia shrubs, but growth is enhanced near shrub canopies. In our field experiment Schismus is facilitated by adult Ambrosia. Under controlled conditions, Schismus does not respond to the density of Ambrosia seedlings, but changes in density of Schismus decreased performance of Ambrosia seedlings. Conclusion: Schismus invasion may be detrimental to native perennial plant populations. Although a reduction of seedling establishment is not usually expected to slow population growth of long‐lived perennials, recent unprecedented adult mortality in this community, and the well‐documented facilitative role of Ambrosia, suggest that Schismus invasion may be of high ecological significance.  相似文献   

11.
Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.  相似文献   

12.
The addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues is a post-translational modification of nucleocytoplasmic proteins that is thought to act in a manner analogous to protein phosphorylation. Recent work shows that many proteins of the metazoan proteasome are modified by O-GlcNAc and that the level of glycosylation is responsive to the nutritional state of the cell. Moreover, increased glycosylation of the 19S (or PA700) regulatory subcomplex has been correlated with decreased proteasomal activity, suggesting a new model of proteasomal regulation.  相似文献   

13.
14.
Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system. Using quantitative mass spectrometry of ubiquitin, we found that in S. cerevisiae under normal growth conditions the majority of conjugated ubiquitin was linked via lysine 48 and lysine 63. In contrast, upon DSK2 induction, conjugates accumulated primarily in the form of lysine 48 linkages correlating with impaired proteolysis and cytotoxicity. By restricting Dsk2 access to the proteasome, extraproteasomal Rpn10 was essential for alleviating the cellular stress associated with Dsk2. This work highlights the importance of polyubiquitin shuttles such as Rpn10 and Dsk2 in controlling the ubiquitin landscape.  相似文献   

15.
Substrates are targeted for proteolysis by the ubiquitin pathway by the addition of a polyubiquitin chain before being degraded by the 26 S proteasome. Previously, a subunit of the proteasome, S5a, was identified that was able to bind to polyubiquitin in vitro and thus proposed to act as a substrate recognition component. Deletion of the corresponding Saccharomyces cerevisiae gene, MCB1/RPN10, rendered cells viable indicating that other proteasomal polyubiquitin receptors must exist. In this study, we describe pus1(+), the fission yeast homologue of RPN10. This gene is also not required for cell viability; however, the Deltapus1 mutant is synthetically lethal with mutations in other proteasomal component-encoding genes, namely mts3, pad1, and mts4 (RPN12, RPN11, and RPN1). Overexpression of pus1(+) is able to rescue mts3-1 at 32 degrees C but overexpression of a cDNA encoding a version of Pus1 that does not bind to polyubiquitin cannot and leads to greatly reduced viability when used to rescue the mts3-1Deltapus1 double mutant. The Mts3 protein was unable to bind to polyubiquitin in vitro, but the Pus1 and Mts3 proteins were found to bind to one another in vitro, which taken together with the genetic data suggests that they are also closely associated in vivo.  相似文献   

16.
17.
Rpn7 is one of the lid subunits of the 26 S proteasome regulatory particle. The RPN7 gene is known to be essential, but its function remains to be elucidated. To explore the function of Rpn7, we isolated and characterized temperature-sensitive rpn7 mutants. All of the rpn7 mutants obtained accumulated poly-ubiquitinated proteins when grown at the restrictive temperature. The N-end rule substrate (Ub-Arg-beta-galactosidase), the UFD pathway substrate (Ub-Pro-beta-galactosidase), and cell cycle regulators (Pds1 and Clb2) were found to be stabilized in experiments using one of the rpn7 mutants termed rpn7-3 at the restrictive temperature, indicating its defect in the ubiquitin-proteasome pathway. Subsequent analysis of the structure of the 26 S proteasome in rpn7-3 cells suggested that the defect was in the assembly of the 26 S holoenzyme. The most striking characteristic of the proteasome of the rpn7-3 mutant was that a lid subcomplex affinity-purified from the rpn7-3 cells grown at the restrictive temperature contained only 5 of the 8 lid components, a phenomenon that has not been reported in the previously isolated lid mutants. From these results, we concluded that Rpn7 is required for the integrity of the 26 S complex by establishing a correct lid structure.  相似文献   

18.
We report the functional characterization of RPN6, an essential gene from Saccharomyces cerevisiae encoding the proteasomal subunit Rpn6p. For this purpose, conditional mutants that are able to grow on galactose but not on glucose were obtained. When these mutants are shifted to glucose, Rpn6p depletion induces several specific phenotypes. First, multiubiquitinated proteins accumulate, indicating a defect in proteasome-mediated proteolysis. Second, mutant yeasts are arrested as large budded cells with a single nucleus and a 2C DNA content; in addition, the spindle pole body is duplicated, indicating a general cell cycle defect related to the turnover of G(2)-cyclins after DNA synthesis. Clb2p and Pds1p, but not Sic1p, accumulate in the arrested cells. Depletion of Rpn6p affects both the structure and the peptidase activity of proteasomes in the cell. These results implicate Rpn6p function in the specific recognition of a subset of substrates and point to a role in maintaining the correct quaternary structure of the 26 S proteasome.  相似文献   

19.
J D Friesen  M Tropak  G An 《Cell》1983,32(2):361-369
We have isolated mutants that fail to exhibit biosynthetic feedback regulation of a rpIJ-lacZ fusion. Analysis of these mutants and of others that were isolated earlier indicates that crucial sequences for both translational feedback regulation and efficient translation lie closely intermingled in the central region of the rpIJ mRNA leader 70-195 bases upstream from the translation start of rpIJ. We suggest that our point mutations define a region of the rpIJ leader mRNA to which L10 binds in effecting autogenous translational regulation.  相似文献   

20.
The phosphatidylinositol 3 kinase (Pi3K)/Akt pathway is a major regulator of cell growth, proliferation, metabolism, survival, and angiogenesis. Despite extensive study, a thorough understanding of the modulation and regulation of this pathway has remained elusive. We have previously demonstrated that syndecan 4 (S4) regulates the intracellular localization of mTORC2, thus altering phosphorylation of Akt at serine473 (Ser473), one of two critical phosphorylation sites essential for the full activation of Akt [1]. Here we report that S4 also regulates the phosphorylation of Akt at threonine308 (Thr308), the second phosphorylation site required for the full Akt activation. A deletion of S4 resulted in lower levels of Thr308 phosphorylation both in vitro and in vivo. Furthermore, a deletion or knockdown of the S4 effector molecule PKCα led to a similar reduction in phosphorylation of Thr308 while overexpression of myristoylated PKCα rescued AktThr308 phosphorylation in endothelial cells lacking S4. Finally, PAK1/2 is also recruited to the rafts by the S4-PKCα complex and is required for AKT activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号