首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cathepsin B, a lysosomal cysteine protease, is synthesized as a glycoprotein with two N-linked oligosaccharide chains, one of which is in the propeptide region while the other is in the mature region. When cultured rat hepatocytes were labeled with [(32)P]phosphate, (32)P-labeled cathepsin B was immunoprecipitated only in the proform from cell lysates and medium. Either Endo H or alkaline phosphatase treatment of (32)P-labeled procathepsin B demonstrated the acquisition of a mannose 6-phosphate (Man 6-P) residue on high mannose type oligosaccharides. To identify the site of phosphorylation, immunoisolated (35)S- or (32)P-labeled procathepsin B was incubated with purified lysosomal cathepsin D, since cathepsin D cleaves 48 amino acid residues from the N-terminus of procathepsin B, in which one N-linked oligosaccharide chain was also included [Kawabata, T. et al. (1993) J. Biochem. 113, 389-394]. Treatment of intracellular (35)S-labeled procathepsin B with a molecular mass of 39-kDa with cathepsin D resulted in the production of the 31-kDa intermediate form, but the (32)P-label incorporated into procathepsin B disappeared after treatment with cathepsin D. These results indicate that the phosphorylation of procathepsin B is restricted to an oligosaccharide chain present in the propeptide region. Interestingly, cathepsin B sorting to lysosomes was not inhibited by NH(4)Cl treatment and about 90% of the intracellular procathepsin B initially phosphorylated was secreted into the medium without being dephosphorylated intracellularly, and did not bind significantly to cation-independent-Man 6-P receptor, suggesting the failure of Man 6-P-dependent transport of procathepsin B to lysosomes. Additionally, about 50% of the newly synthesized (35)S-labeled cathepsin B was retained in the cells in mature forms consisting of a 29-kDa single chain form and a 24-kDa two chain form, while part of the procathepsin B was associated with membranes in a Man 6-P-independent manner. Taken together, these results show that in rat hepatocytes, cathepsin B is targeted to lysosomes by an alternative mechanism(s) other than the Man 6-P-dependent pathway.  相似文献   

2.
Lysosomal proteinases are translated as preproforms, transported through the Golgi apparatus as proforms, and localized in lysosomes as mature forms. In this study, we analyzed which subclass of proteinases participates in the processing of lysosomal proteinases using Bafilomycin A1, a vacuolar ATPase inhibitor. Bafilomycin A1 raises lysosomal pH resulting in the degradation of lysosomal proteinases such as cathepsins B, D, and L. Twenty-four hours after the withdrawal of Bafilomycin A1, NIH3T3 cells possess these proteinases in amounts and activities similar to those in cells cultured in DMEM and 5% BCS. In the presence of various proteinase inhibitors, procathepsin processing is disturbed by E-64-d, resulting in abnormal processing of cathepsins D and L, but not by APMSF, Pepstatin A, or CA-074. In the presence of Helicobacter pylori Vac A toxin, which prevents vesicular transport from late endosomes to lysosomes, the processing of procathepsins B and D occurs, while that of procathepsin L does not. Thus, procathepsins B and D are converted to their mature forms in late endosomes, while procathepsin L is processed to the mature form after its arrival in lysosomes by some cysteine proteinase other than cathepsin B.  相似文献   

3.
Various biosynthetic forms of porcine spleen cathepsin D (Erickson, A. H. and Blobel, G. (1979) J. Biol. Chem. 254, 11771-11774), isolated by immunoprecipitation of in vivo- and in vitro-synthesized products, have been characterized by partial NH2-terminal sequence analysis. Two short lived and functionally distinct NH2-terminal sequence extensions, a "pre" sequence and a "pro" sequence, have been detected. Both sequence extensions are present in preprocathepsin D which is the primary translation product immunoprecipitated after translation of porcine spleen mRNA in a wheat germ cell-free system. Preprocathepsin D is not glycosylated and has an approximate Mr = 43,000. Its 20-residue pre sequence resembles the signal sequences of presecretory proteins in abundance of Leu residues (7 out of 20 residues). Addition of dog pancreatic microsomal vesicles to the translation system resulted in the cleavage of the pre sequence and yielded segregated and glycosylated procathepsin D (Mr = 46,000) that was indistinguishable from its in vivo-synthesized counterpart detected after pulse-labeling of cultured porcine kidney cells. Some of this in vivo-synthesized procathepsin D was secreted and persisted as such in the culture medium. The remainder was converted within a period of 15 min to 2 h to single chain cathepsin D (Mr = 44,000) by removal of a pro sequence which was estimated to be 44 residues. Its partial sequence showed considerable sequence homology to the 44-residue activation peptide of pepsinogen. It is possible, therefore, that the prosequence of procathepsin D serves as an activation peptide that keeps the enzyme inactive during intracellular transport to the lysosome. The enzymatically active single chain form of cathepsin D undergoes further cleavage into a light and a heavy chain (Mr = 15,000 and 30,000, respectively) over a period of 2-24 h after synthesis. The oligosaccharide moieties of procathepsin D and of the single chain and heavy chain forms of cathepsin D are cleaved by endoglycosidase H. Treatment of cells with tunicamycin arrests the biosynthetic pathway of cathepsin D at procathepsin D. The nonglycosylated procathepsin D is not proteolytically processed and its secretion is greatly inhibited.  相似文献   

4.
Angiostatin, a potent endogenous inhibitor of angiogenesis, is generated by cancer-mediated proteolysis of plasminogen. The culture medium of human prostate carcinoma cells, when incubated with plasminogen at a variety of pH values, generated angiostatic peptides and miniplasminogen. The enzyme(s) responsible for this reaction was purified and identified as procathepsin D. The purified procathepsin D, as well as cathepsin D, generated two angiostatic peptides having the same NH(2)-terminal amino acid sequences and comprising kringles 1-4 of plasminogen in the pH range of 3.0-6.8, most strongly at pH 4.0 in vitro. This reaction required the concomitant conversion of procathepsin D to catalytically active pseudocathepsin D. The conversion of pseudocathepsin D to the mature cathepsin D was not observed by the prolonged incubation. The affinity-purified angiostatic peptides inhibited angiogenesis both in vitro and in vivo. Importantly, procathepsin D secreted by human breast carcinoma cells showed a significantly lower angiostatin-generating activity than that by human prostate carcinoma cells. Since deglycosylated procathepsin D from both prostate and breast carcinoma cells exhibited a similar low angiostatin-generating activity, this discrepancy appeared to be attributed to the difference in carbohydrate structures of procathepsin D molecules between the two cell types. The seminal vesicle fluid from patients with prostate carcinoma contained the mature cathepsin D and procathepsin D, but not pseudocathepsin D, suggesting that pseudocathepsin D is not a normal intermediate of procathepsin D processing in vivo. The present study provides evidence for the first time that cathepsin D secreted by human prostate carcinoma cells is responsible for angiostatin generation, thereby causing the prevention of tumor growth and angiogenesis-dependent growth of metastases.  相似文献   

5.
Expression of rat procathepsin B in yeast led to the secretion of both the latent and mature forms of the enzyme. Culture in the presence of a cysteine proteinase inhibitor prevented this processing. We have expressed and purified a mutant form of rat procathepsin B whose active-site cysteine residue has been changed to a serine, and which also lacks the glycosylation site in the mature region of the protein. This non-active mutant protein was secreted essentially in an unprocessed form. The purified protein has been incubated with a variety of proteinases, and results indicate that cathepsins D and L, as well as mature cathepsin B itself, can produce a processed (single-chain) form of cathepsin B from this precursor. Amino-terminal sequencing of these processed forms has revealed that they are all elongated by a few residues with respect to the mature form found in vivo. The action of a combination of cathepsin B with dipeptidylpeptidase I produced a single-chain form of cathepsin B with the correct amino terminus. This work has also shown that the processing of procathepsin B to a single-chain form can be an autocatalytic process, in at least an intermolecular manner.  相似文献   

6.
We investigated the mechanism of apoptosis induced by bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Bafilomycin A(1) significantly inhibited the growth of MKN-1 human gastric cancer cells. Bafilomycin A(1) induced apoptosis as demonstrated by DNA ladder formation and the TUNEL method. We designed a flow cytometric assay to detect the alteration in lysosomal pH using a fluorescent probe, fluorescein isothiocyanate-conjugated dextran. This assay revealed that bafilomycin A(1) dramatically increased lysosomal pH. However, bafilomycin A(1) induced neither significant decrease in mitochondrial transmembrane potential nor the release of mitochondrial cytochrome c into the cytoplasm. Western blotting showed that cathepsin D, but not cathepsin L, was released into the cytoplasm. The activity of caspase-3 was significantly increased by bafilomycin A(1). However, cathepsin D did not directly cleave procaspase-3. These findings suggest that bafilomycin A(1)-induced apoptosis in MKN-1 cells is mediated by other proteases released after lysosomal dysfunction followed by activation of caspase-3 in a cytochrome c-independent manner. The present study showed that flow cytometric analysis of lysosomal pH can be useful to evaluate lysosomal protease-mediated apoptosis.  相似文献   

7.
A precursor form of cathepsin D with 45 kDa was demonstrated in the rat liver microsomal lumen by immunoblotting analysis. The microsomal fraction containing procathepsin D which passed through a pepstatin-Sepharose resin showed no appreciable activity of cathepsin D. The in vitro incubation of this fraction at pH 3.0 resulted in a gradual increase of proteolytic activity toward hemoglobin as substrate and also, the proteolytic conversion of procathepsin D to the mature form was concomitantly observed. The proteolytic processing step was sensitive to pepstatin. These results suggest that procathepsin D is inactive in the endoplasmic reticulum and may be converted to the active forms by autoproteolytic processing mechanism at acidic pH during biosynthesis.  相似文献   

8.
 Previous studies implicated cathepsin D as one commonly recognized target of tumor-reactive immunoglobulins from ovarian cancer patients. These immunoglobulins are shown to be immunoreactive with both the 52-kDa procathepsin D and the 32-kDa mature cathepsin D derived from the UL-1 ovarian cancer cell line. Whether the carbohydrate domains or the core protein were associated with its immunogenicity was analyzed with cathepsin D isolated from tunicamycin-treated UL-1 cells. No significant difference was detected in the immunoreactivity of patient serum with the glycosylated and deglycosylated forms of the cathepsin D, suggesting that patient humoral responses are directed primarily against the core protein. To define the antigenic epitopes of cathepsin D, tryptic fragments were prepared from UL-1-derived procathepsin D. The epitopes of the core protein recognized by sera from more than one patient were identified using a peptide-specific enzyme-linked immunosorbent assay and microsequencing of positive immunoreactive peptides. This protocol identified four epitopes: two peptides within the pro-peptide, a third at the carboxy terminus and the fourth at the glycosylation site of the mature enzyme. This approach to the identification of specific antigenic epitopes may be useful in defining effective targets for directed active immunotherapy against cancer. Received: 8 September 1997 / Accepted: 21 October 1997  相似文献   

9.
The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys(26) with Gly(26), failed to autoprocess. However, [Gly(26)]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.  相似文献   

10.
11.
The presence of procathepsin D, a zymogen of the soluble lysosomal aspartic proteinase cathepsin D, was detected in rat milk using Western blot analysis and assay of proteolytic activity in acidic buffers. No other forms of cathepsin D were found. Two different polyclonal anti-procathepsin D antibodies were used for immunochemical detection of procathepsin D. Both antibodies we found to recognize rat procathepsin D. Proteolytic activity in acidic buffers was detected using a fluorogenic substrate specific for cathepsin D and was abolished by pepstatin A, a specific inhibitor of aspartic proteinases. This study represents third demonstration of presence of procathepsin D in mammal breast milk. Potential sources and physiological functions are discussed.  相似文献   

12.
A procedure is described that allows the characterization of the molecular forms of beta-hexosaminidase and cathepsin D in controls and pathological specimens of human serum and human urine. The following observations were made. (1) In human serum, beta-hexosaminidase (alpha- and beta-chain) and cathepsin D are present predominantly in their high-molecular-weight precursor forms. In human urine, these enzymes exist as both precursor and mature forms. (2) Cathepsin D precursor from serum and urine differs in the number of oligosaccharides that are sensitive to endo-beta-N-acetylglucosaminidase H. Therefore the urine enzyme is not likely to originate from the serum. (3) The presence exclusively of precursors of beta-hexosaminidase and of cathepsin D in the sera of patients with hepatitis suggests that in hepatitis secretion of lysosomal enzymes is elevated, rather than the enzymes leaking from damaged cells. (4) In the urine of patients with nephrotic syndrome, beta-hexosaminidase and cathepsin D are present in grossly elevated amounts, but do not differ in the polypeptide patterns from controls. (5) In urine from a patient with mucolipidosis II, the elevated activity of beta-hexosaminidase is accounted for mainly by the precursor forms. Mature beta-chain of beta-hexosaminidase is lacking, and incompletely processed beta-hexosaminidase polypeptides are present. Both the precursor and the mature forms of cathepsin D are increased. They contain only complex oligosaccharides.  相似文献   

13.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

14.
Besides acting as an inhibitor, the propeptide of human cathepsin B exerts an important auxiliary function as a chaperone in promoting correct protein folding. To explore the ability of N-terminally truncated forms of procathepsin B to fold into enzymatically active proteins, we produced procathepsin B variants progressively lacking N-terminal structural elements in baculovirus-infected insect cells. N-terminal truncation of the propeptide by up to 22 amino acids did not impair the production of activable procathepsin B. Secreted forms lacking the first 20, 21, or 22 amino acids spontaneously generated mature cathepsin B through autocatalytic processing, demonstrating that the first alpha-helix (Asp11-Arg20) is necessary for efficient inhibition of the enzyme by its propeptide. In contrast, proenzymes lacking the N-terminal part including the first beta-sheet (Trp24-Ala26) of the propeptide or containing an amino acid mutation directly preceding this beta-sheet were no longer properly folded. This shows that interactions between Trp24 of the propeptide and Tyr183, Tyr188, and Phe180 of the mature enzyme are important for stabilization and essential for procathepsin B folding. Thus, proenzyme forms missing more than the N-terminal 22 amino acids of the propeptide (notably truncated cathepsin B produced by the mRNA splice variant lacking exons 2 and 3, resulting in a propeptide shortened by 34 amino acids) are devoid of proteolytic activity because they cannot fold correctly. Thus, any pathophysiological involvement of truncated cathepsin B must be ascribed to properties other than proteolysis.  相似文献   

15.
Although cysteine cathepsins, including cathepsin K, are sensitive to oxidation, proteolytically active forms are found at inflammatory sites. Regulation of cathepsin K activity was analyzed in the presence of H2O2 to gain an insight into these puzzling observations. H2O2 impaired processing of procathepsin K and inactivated its mature form in a time- and dose-dependent mode. However, as a result of the formation of a sulfenic acid, as confirmed by trapping in the presence of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol, approximately one-third of its initial activity was restored by dithiothreitol. This incomplete inactivation may partially explain why active cysteine cathepsins are still found during acute lung inflammation.  相似文献   

16.
Effect of brefeldin A on the transport of lysosomal acid hydrolases (cathepsins D and H) was investigated in primary cultured rat hepatocytes. Both cathepsins were synthesized as proenzymes and progressively converted to mature enzymes in the control cells. However, BFA strongly inhibited the appearance of the mature enzymes in the cells in a dose dependent manner, suggesting that transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes is blocked by the drug. The inhibitory effect by brefeldin A was reversible. Upon recovery from brefeldin A-intoxication, procathepsin D was effectively targeted into lysosomes, whereas a substantial amount of procathepsin H was found to be missorted, resulting in its secretion into the culture medium.  相似文献   

17.
Newly-synthesized soluble lysosomal enzymes are transported from the trans-Golgi network to lysosomes by a mannose 6-phosphate receptor-mediated pathway. Lysosomal storage of indigestible material has been reported to perturb the biosynthesis and the fate of lysosomal hydrolases. In this study, we have focused our attention on the last steps in the transport of newly-synthesized cathepsin D to lysosomes in sucrose-treated WI-38 fibroblasts. Pulse-chase experiments indicate that, in sucrose-treated cells, cathepsin D maturation is delayed by 2 to 4 h. By subcellular fractionation, we show that newly-synthesized cathepsin D precursors transit through organelles endowed with a high sedimentation coefficient. These organelles are recovered in the dense region of a self-forming Percoll density gradient while the bulk of hydrolytic activities is redistributed to the low density region. Only later, are the precursors delivered to organelles containing the bulk of active hydrolases. There, procathepsin D is proteolytically processed into its 31 kDa-mature form. Our results suggest that when sucrose is present, the delayed maturation of procathepsin D is related to the delivery of the polypeptides into an organelle behaving in centrifugation like lysosomes but which is poorly efficient in proteolytic processing of procathepsin D. This low proteolytic activity of this organelle could be due to its poor ability to interact with hydrolase-containing structures.  相似文献   

18.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

19.
Abstract: Cathepsin E is a major nonlysosomal, intracellular aspartic proteinase that localizes in various cellular compartments such as the plasma membrane, endosome-like organelles, and the endoplasmic reticulum (ER). To learn the segregation mechanisms of cathepsin E into its appropriate cellular destinations, the present studies were initiated to define the biosynthesis, processing, and intracellular localization as well as the site of proteolytic maturation of the enzyme in primary cultures of rat brain microglia. Immunohistochemical and immunoblot analyses revealed that cathepsin E was the most abundant in microglia among various brain cell types, where the enzyme existed predominantly as the mature enzyme. Immunoelectron microscopy studies showed the presence of the enzyme predominantly in the endosome-like vacuoles and partly in the vesicles located in the trans-Golgi area and the lumen of ER. In the primary cultured microglial cells labeled with [35S]methionine, >95% of labeled cathepsin E were represented by a 46-kDa polypeptide (reduced form) after a 30-min pulse. Most of it was proteolytically processed via a 44-kDa intermediate to a 42-kDa mature form within 4 h of chase. This processing was completely inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Brefeldin A, a blocker for the traffic of secretory proteins from the ER to the Golgi complex, also inhibited the processing of procathepsin E and enhanced its degradation. Procathepsin E, after pulse-labeling, showed complete susceptibility to endoglycosidase H, whereas the mature enzyme almost acquired resistance to endoglycosidases H as well as F. The present studies provide the first evidence that cathepsin E in microglia is first synthesized as the inactive precursor bearing high-mannose oligosaccharides and processed to the active mature enzyme with complex-type oligosaccharides via the intermediate form and that the final proteolytic maturation step occurs in endosome-like acidic compartments.  相似文献   

20.
Procathepsins B and L in the hepatic endoplasmic lumen were identified as having a molecular weight of 39,000 by immunoblot analysis. The proenzymes were then purified to remove the mature enzymes by concanavalin A-Sepharose chromatography. The concanavalin A-adsorbed fractions containing the proenzymes showed no appreciable activities of cathepsins B and L. When those fractions were incubated at pH 3.0, the enzymatic activities markedly increased: the activities of cathepsins B and L after 36 h incubation were 60 and 210 times those of the controls, respectively. Immunoblot analysis showed that after 36 h incubation the proenzymes disappeared and the mature enzymes increased. Thus the proenzymes were processed to the mature enzymes under acidic conditions of pH 3.0. The marked increases of enzymatic activities and the conversion of the proenzymes to the mature forms were completely blocked with pepstatin, which is a potent inhibitor of aspartic proteases. The results strongly suggested that a processing protease for procathepsins B and L might be cathepsin D, a major lysosomal aspartic protease. Indeed, lysosomal cathepsin D could convert microsomal procathepsin B to the mature enzyme in vitro. Therefore, procathepsins B and L seem first to be synthesized as enzymatically inactive forms in endoplasmic reticulum and successively may be converted into active forms by cathepsin D in lysosomal compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号