首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for the preparation of synaptosomes and synaptosomal membranes from chicken brain. Procedures for isolating rat synaptosomal membranes could not be used directly; several modifications of existing procedures are reported. Purity of the subcellular and subsynaptosomal fractions was monitored by electron microscopy and measurements of ferrocytochrome c: oxygen oxidoreductase (EC 1.9.3.)), monoamine: oxygen oxidoreductase (deaminating) EC 1.4.3.4), rotenone-insensitive NADH: cytochrome c oxidoreductase (EC 1.6.99.3), NADPH: cytochrome c oxidoreductase (EC 1.6.99.1), orthophosphoric monoester phosphohydrolase (EC 3.1.3.2), ATP phosphohydrolase (EC 3.6.1.4), and levels of RNA. Microsomes are the main contaminant of the synaptosomal membrane fraction. Mitochondrial and lysosomal enzymes occur in lesser amounts. No myelin contamination was observed. Marker enzymes for contaminants suggest that these synaptosomal membranes are as pure as membranes described by others, and the specific activity of a neuronal membrane marker, (Na+ -K+)-activated ATPase, is as high as other preparations. Levels of this enzyme in the membrane fraction are enriched 13-fold over homogenate ATPase levels.  相似文献   

2.
Triamcinoline acetonide (10 mg per kg of body weight a day) was administered to rabbit fed on a laboratory chow diet. The content of flavins in liver but not in kidney, muscle and brain started to decrease 24 h after a single dose. The activities of enzymes in the liver were determined: the activities of pyruvate dehydrogenase complex, lipoamide dehydrogenase (NADH:lipoamide oxidoreductase EC 1.6.4.3), NADH dehydrogenase (NADH : (acceptor) oxidoreductase EC 1.6.99.3) and D-amino acid oxidase (D-amino acid: oxygen oxidoreductase (deaminating) EC 1.4.3.3) were decreased but those of succinate dehydrogenase (succinate : (acceptor) oxidoreductase EC 1.3.99.1) and xanthine oxidase (xanthine : oxygen oxidoreductase EC 1.2.3.2) remained unchanged. The activities of enzymes in the kidney, however, remained unchanged except the decrease in the activity of pyruvate dehydrogenase complex.  相似文献   

3.
Triamcinoline acetonide (10 mg per kg of body weight a day) was administered to rabbit fed on a laboratory chow diet. The content of flavins in liver but not in kidney, muscle and brain started to decrease 24 h after a single dose. The activities of enzymes in the liver were determined: the activities of pyruvate dehydrogenase complex, lipoamide dehydrogenase (NADH : lipoamide oxidoreductase EC 1.6.4.3), NADH dehydrogenase (NADH : (acceptor) oxidoreductace EC 1.6.99.3) and -amino acid oxidase ( -amino acid : oxygen oxidoreductase (deaminating) EC 1.4.3.3) were decreased but those of succinate dehydrogenase (succinate : (acceptor) oxidoreductase EC 1.3.99.1) and xanthine oxidase (xanthine : oxygen oxidoreductase EC 1.2.3.2) remained unchanged. The activities of enzymes in the kidney, however, remained unchanged except the decrease in the activity of pyruvate dehydrogenase complex.  相似文献   

4.
A method is described for the preparation of synaptosomes and synaptosomal membranes from chicken brain. Procedures for isolating rat synaptosomal membranes could not be used directly; several modifications of existing procedures are reported. Purity of the subcellular and subsynaptosomal fractions was monitored by electron microscopy and measurements of ferrocytochrome c: oxygen oxidoreductase (EC 1.9.3.1.), monoamine: oxygen oxidoreductase (deaminating) (EC 1.4.3.4), rotenoneinsensitive NADH: cytochrome c oxidoreductase (EC 1.6.99.3), NADPH: cytochrome c oxidoreductase (EC 1.6.99.1), orthophosphoric monoester phosphohydrolase (EC 3.1.3.2), ATP phosphohydrolase (EC 3.6.1.4), and levels of RNA. Microsomes are the main contaminant of the synaptosomal membrane fraction. Mitochondrial and lysosomal enzymes occur in lesser amounts. No myelin contamination was observed. Marker enzymes for contaminants suggest that these synaptosomal membranes are as pure as membranes described by others, and the specific activity of a neuronal membrane marker, (Na+?K+)-activated ATPase, is as high as other preparations. Levels of this enzyme in the membrane fraction are enriched 13-fold over homogenate ATPase levels.  相似文献   

5.
Bulk membrane fragments were prepared from cells of Bacillus cereus ATCC 4342 harvested at different stages of growth and sporulation and examined for enzymes involved in electron transport functions. The presence of succinate: DCPIP oxidoreductase (EC 1.3.99.1), succinate: cytochrome c oxidoreductase (EC 1.3.2.1), NADH:DCPIP oxidoreductase (EC 1.6.99.1), NADH:cytochrome c oxidoreductase (EC 1.6.2.1), succinate oxidase [succinate: (O(2)) oxidoreductase, EC 1.3.3.1], and NADH oxidase [NADH:(O(2)) oxidoreductase, EC 1.6.3.1] were demonstrated in membrane fragments from vegetative cells, early and late stationary-phase cells, and in cells undergoing sporulation. During the transition from a vegetative cell to a spore, there was a significant increase in the levels of enzymes associated with energy production via the electron transport system. Cytochromes of the a, b, and c type were detected in all membrane preparations; however, there was a marked increase in the level of cytochromes by the end of vegetative growth which remained throughout sporulation; there were no qualitative changes in the cytochromes throughout growth and sporulation. Sporulation was inhibited by cyanide, stressing the significance of the electron transport system. Enzyme activities were partially masked in washed membrane fragments; however, unmasking (stimulation) was achieved by sodium deoxycholate, sodium dodecyl sulfate, or Triton X-100. The degree of enzyme masking was less in vegetative cell membrane fragments than in membranes prepared from stationary-phase or sporulating cells. Results indicate the development of a membrane-bound electron transport system in B. cereus by the end of growth and prior to sporulation, which results in an increased masking of a number of enzymes associated with the terminal respiratory system of the cell.  相似文献   

6.
Membrane vesicles were prepared by osmotic lysis of spheroplasts from M13-infected Escherichia coli. Reduced nicotinamide adenine dinucleotide (NADH) oxidase (reduced NAD: oxidoreductase, EC 1.6.99.3) and Mg2+-Ca2+-activated adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3), which are normally localized to the inner surface of the cytoplasmic membrane, were 50% acceesible to their polar substrates in these vesicles. The major coat protein of coliphage M13 is also bound to the cytoplasmic membrane (prior to phage assembly) but with its antigenic sites exposed to the exterior of the cell. Antibody to M13 coat protein was used to fractionate membrane vesicles. Neither agglutinated nor unagglutinated vesicles had altered NADH oxidase and adenosine triphosphatase specific activities. This is inconsistent with such vesicles being a mixture of correctly oriented and completely inverted membrane sacs and suggests that NADH oxidase, adenosine triphosphatase, M13 coat protein, or all three proteins rearrange during vesicle preparation.  相似文献   

7.
A novel NADH dehydrogenase (NADH-dh) involving FAD as coenzyme, distinct from NADPH dehydrogenase (NADPH-dh, old yellow enzyme, EC 1.6.99.1), was found in the same cytoplasmic fraction of Gluconobacter strains. Conventional artificial electron acceptors were more effective than molecular oxygen in the NADH-dh reaction. NADH-dh did not appear to be identical with any previously described flavoproteins, although the N-terminal amino acid sequence showed 100% similarity with a non-heme chloroperoxidase. The N-terminal amino acid sequence of NADPH-dh matched 100% a putative oxidoreductase containing the old yellow enzyme-like FMN-binding domain. NADH-dh might function to regenerate NAD coupling with NAD-dependent dehydrogenases in the cytoplasm of Gluconobacter strains.  相似文献   

8.
《Anaerobe》2000,6(3):187-196
To investigate electron transport in the dissimilatory iron-reducing isolate Geobacter metallireducens strain GS-15, assays for redox enzymes and characterizations of cytochromes were performed. G. metallireducens produced 1.56 g dry cell weight per mol etransferred when grown on benzoate and contained the following citric acid cycle enzymes (activities in nkat per mg cell protein); isocitrate dehydrogenase (0.84), coenzyme A-dependent 2-oxoglutarate: methyl viologen oxidoreductase (2.80), succinate dehydrogenase (0.80), and malate dehydrogenase (8.35). An oxygen-sensitive, soluble coenzyme A-dependent 2-oxoglutarate: ferredoxin oxidoreductase (0.14) with no NAD(P)-activity was observed. In cell suspensions NADPH, but not NADH, could reduce methyl viologen (2.45). Isocitrate and malate dehydrogenase activities were soluble enzymes that coupled with NADP and NAD, respectively. NADPH (0.94) and NADH (1.85) oxidation activities were observed in detergent solubilized, whole-cell suspensions using the artificial electron acceptor menadione. Menaquinone was observed at 1.2 μmol per g cell protein. The triheme c7cytochrome was purified and 37 amino acids were determined. The mass observed by mass spectroscopy was 9684±10 Da. The average mid-point potential for the three hemes was measured at −91 mV. The growth yield, redox reactions, and electron transfer components are discussed with regards to possible sites of energy conservation during growth on iron(III).  相似文献   

9.
1. An NADH-dependent nitroreductase from the inner membrane of ox liver mitochondria copurified with Complex I of the respiratory redox chain (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). 2. The corresponding nitroreductase from ox heart mitochondria co-purified with the NADH-cytochrome c reductase of Mahler, Sarkar & Vernon [(1952) J. Biol. Chem. 199, 585-597] [NADH: (acceptor) oxidoreductase, EC 1.6.99.3], a component of Complex I that contains the FMN. 3. The mitochondrial nitroreductase activity is attributed to the flavoprotein component of Complex I.  相似文献   

10.
Campylobacter species are rich in c-type cytochromes, including forms which bind carbon monoxide. The role of the various forms of cytochromes in Campylobacter fetus has been examined in cell-free preparations by using physiological electron donor and acceptor systems. Under anaerobic conditions, NADPH reduced essentially all of the cytochrome c in crude cell extracts, whereas the reduction level with succinate was 50 to 60%. The carbon monoxide spectrum with NADPH was predominated by the cytochrome c complex; evidence of a cytochrome o type was seen in the succinate-reduced extracts and in membrane fractions. Succinate-reduced cytochrome c was oxidized by oxygen via a cyanide-sensitive, membrane-associated system. NADPH-reduced cytochrome c was oxidized by a cyanide-insensitive system. Partially purified carbon monoxide-binding cytochrome c, isolated from the cytoplasm, could serve as electron acceptor for NADPH-cytochrome c oxidoreductase; the reduced cytochrome was oxidized by oxygen by a cyanide-insensitive system present in the cytoplasmic fraction. Horse heart cytochrome c was also reducible by NADPH and by succinate; the reduced cytochrome was oxidized by a cyanide-sensitive system in the membrane fraction. NADPH and NADH oxidase activities were observed aerobically and under anaerobic conditions with fumarate. NADPH was more active than NADH. NADP was also more effective than NAD as an electron acceptor for the coenzyme A-dependent pyruvate and alpha-ketoglutarate dehydrogenase activities found in crude extracts. These dehydrogenases used methyl viologen and metronidazole as electron acceptors; they could be loci for oxygen inhibition of growth. It is proposed that energy provision via the high-potential cytochrome c oxidase system in the cytoplasmic membrane is limited by oxygen-sensitive primary dehydrogenases and that the carbon monoxide-binding cytochrome c may have a role as an oxygen scavenger.  相似文献   

11.
The steady-state kinetics of oxidation of the mitochondrial NADH: ubiquinone oxidoreductase (complex I, EC 1.6.99.3) by artificial electron acceptors--p-quinones and inorganic complexes has been investigated. A limiting stage in the NADH: ferricyanide reductase reaction is a reductive half-reaction. Ferricyanide interacts with negative-charged protein groups taking part in the NADH binding. The rate constants of the quinone reduction by complex I vary from 1.10(6) to 4.10(3) M-1s-1. The NADH, NAD+ and ADP-ribose inhibition data indicate that oxidizers in the rotenono-insensitive reaction interact with the redox centre near the NAD+/NADH binding site, most probably with FMN.  相似文献   

12.
 One- and 2-year-old Pinus sylvestris saplings were exposed to chronic doses of ozone (O3) and sulphur dioxide (SO2) in short-term (3 months) and long-term (18 months) experiments. Microsomal and plasma membrane fractions were purified by phase partitioning from current-year needles. The following membrane enzyme activities were determined in the microsomal and/or purified plasma membrane fractions: K+, Mg2+-ATPase (EC 3.6.1.3), NADH ferricyanide oxidoreductase (EC 1.6.99.3), NADH-duroquinone reductase (EC 1.6.5.1), NADH oxidase type I (EC 1.6.99.2), NADH oxidase type II or peroxidase-like enzyme (EC 1.11.1.7) and pyrophosphatase (EC 3.6.1.1). NADH oxidase type I was slightly stimulated in the microsomal fraction after a short-term exposure to O3 whereas NADH-dependent duroquinone reductase was not affected by this pollutant. However, in the long term experiment, NADH oxidase type II measured in the plasma membrane fraction was more than 2-fold stimulated in the SO2 treated pines and more than 4-fold when O3 was added to SO2. However, pyrophosphatase was decreased by 50% in trees treated with SO2+O3 and remained unchanged in the SO2 treatment, indicating that this enzyme is probably sensitive to oxidation. K+, Mg2+-ATPase showed a trend towards an enhancement of activity when exposed to chronic concentrations of air pollutants, this enhancement was more important in the long-term experiment after the combined effect of SO2 and O3. However, the K+-stimulated component was inhibited by the combination of both pollutants. Finally, NADH ferricyanide reductase was significantly enhanced after O3 and SO2+O3 exposures appearing as the most sensitive oxidoreductase to these air pollutants. The stimulation of ATPase and membrane oxidoreductases could facilitate the adaptation and defense of trees by maintaining an adequate redox potential in the plasma membrane region and perhaps stimulating the reduction of extracellular electron acceptors generated by the exposure to air pollutants. Received: 15 September 1997 / Accepted: 4 May 1998  相似文献   

13.
NADH- and NAD(P)H-Nitrate Reductases in Rice Seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
By use of affinity chromatography on blue dextran-Sepharose, two nitrate reductases from rice (Oryza sativa L.) seedlings, specifically, NADH:nitrate oxidoreductase (EC 1.6.6.1) and NAD(P)-H:nitrate oxidoreductase (EC 1.6.6.2), have been partially separated. Nitrate-induced seedlings contained more NADH-nitrate reductase than NAD(P)H-nitrate reductase, whereas chloramphenicol-induced seedlings contained primarily NAD(P)H-nitrate reductase. NAD(P)H-nitrate reductase was shown to utilize NADPH directly as reductant. This enzyme has a preference for NADPH, but reacts about half as well with NADH.  相似文献   

14.
NADPH is an intermediate in the oxidation of organic compounds coupled to Fe(III) reduction in Geobacter species, but Fe(III) reduction with NADPH as the electron donor has not been studied in these organisms. Crude extracts of Geobacter sulfurreducens catalyzed the NADPH-dependent reduction of Fe(III)-nitrilotriacetic acid (NTA). The responsible enzyme, which was recovered in the soluble protein fraction, was purified to apparent homogeneity in a four-step procedure. Its specific activity for Fe(III) reduction was 65 micromol. min(-1). mg(-1). The soluble Fe(III) reductase was specific for NADPH and did not utilize NADH as an electron donor. Although the enzyme reduced several forms of Fe(III), Fe(III)-NTA was the preferred electron acceptor. The protein possessed methyl viologen:NADP(+) oxidoreductase activity and catalyzed the reduction of NADP(+) with reduced methyl viologen as electron donor at a rate of 385 U/mg. The enzyme consisted of two subunits with molecular masses of 87 and 78 kDa and had a native molecular mass of 320 kDa, as determined by gel filtration. The purified enzyme contained 28.9 mol of Fe, 17.4 mol of acid-labile sulfur, and 0.7 mol of flavin adenine dinucleotide per mol of protein. The genes encoding the two subunits were identified in the complete sequence of the G. sulfurreducens genome from the N-terminal amino acid sequences derived from the subunits of the purified protein. The sequences of the two subunits had about 30% amino acid identity to the respective subunits of the formate dehydrogenase from Moorella thermoacetica, but the soluble Fe(III) reductase did not possess formate dehydrogenase activity. This soluble Fe(III) reductase differs significantly from previously characterized dissimilatory and assimilatory Fe(III) reductases in its molecular composition and cofactor content.  相似文献   

15.
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH.  相似文献   

16.
The thermal dependence of two of the reactions catalyzed bythe nitrate reductase from Chlorella vulgaris was determined.The activation energies for NADH:nitrate oxidoreductase (EC1.6.6.1 [EC] ) and NADH:Cytochrome c oxidoreductase (EC 1.6.99.3 [EC] )are 42.1 kJ?mol–1 and 21.5 kJ?mol–1, respectively.Since the thermal dependency of the two enzymes is different,ratios of the activities will vary with temperature. The importanceof both rigorous thermal control during nitrate reductase assaysas well as the need to specify the temperature at which theratio of activities for the enzyme are clearly established. 1Present Address: Cropping Systems Research Laboratory, USDA-ARS,Route 3, Box 215, Lubbock, TX 79401, U.S.A. (Received November 25, 1987; Accepted March 2, 1988)  相似文献   

17.
Studies were made on the mechanism of respiration in Fasciola hepatica (Trematoda). Respiration was found to be dependent on the oxygen tension. The respiratory enzyme systems, NADH-cytochrome c oxidoreductase (EC 1.6.2.1), succinate-cytochrome c oxidoreductase (EC 1.3.99.1) NADH oxidase and cytochrome c-oxygen oxidoreductase (EC 1.9.3.1) were detected in a mitochondrial preparation, the NADH oxidase activity being markedly stimulated by addition of mammalian cytochrome c. Amytal and rotenone inhibited NADH oxidase activity. Antimycin A inhibited succinoxidase activity only at relatively high concentrations. Azide was inhibitory at high concentrations. However, cyanide was found to stimulate respiration. Hydrogen peroxide was found to be an end product of respiration in F. hepatica.  相似文献   

18.
A cDNA encoding the NADPH:protochlorophyllide oxidoreductase(EC 1.6.99.1 [EC] ) was isolated from suspension-cultured cells ofthe liverwort, Marchantia paleacea var. diptera. In contrastto the situation in most higher plants, the liverwort gene wasexpressed in a light-dependent manner. 2Present address: Department of Biological Science, Facultyof Science, Kumamoto University, Kurokami, Kumamoto, 860-8555Japan.  相似文献   

19.
Administration of niridazole to Saccostomus campestris produced changes in enzyme activity in Schislosoma haematobium females as indicated histochemically by a decrease in the activity of cytochrome oxidase (EC 1.9.3.1), malate (NAD) dehydrogenase (EC 1.1.1.37), malate (NADP) dehydrogenase (EC 1.1.1.40), succinate dehydrogenase (EC 1.3.99.11), isocitrate (NAD) dehydrogenase (EC 1.1.1.41), isocitrate (NADP) dehydrogenase (EC 1.1.1.42), lactate dehydrogenase (EC 1.1.1.27), glucose-6-phosphate dehydrogenase (EC 1.1.1.49), NADH: tetrazolium oxidoreductase, NADPH: tetrazolium oxidoreductase, and a disappearance of both the activity of phenolase (EC 1.10.3.1) and the reactivity of vitelline phenols. These changes were associated with the following alterations in the ultrastructure of the parasites: a decrease in number of immature vitelline cells of gonial type, a disruption of the tegument surface, a swelling of mitochondria in vitelline cells, a disappearance of the regular structure of the endoplasmic reticulum and a vaeuolization of the cytoplasm in vitelline cells, an appearance of areas of focal cytoplasmic degradation in vitelline cells, and a disruption of shell globules. The degree of changes in enzyme activity and ultrastructure increased both with increase in the dose of niridazole administered to the hosts, and with length of time after treatment.Preincubation of control sectioned material in a buffered niridazole-sucrose solution produced total inhibition of succinate dehydrogenase activity, whereas the activity of other enzymes examined remained unchanged.  相似文献   

20.
The soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC 1.12.1.2) from Alcaligenes eutrophus H 16 was purified 68-fold with a yield of 20% and a final specific activity (NAD reduction) of about 54 mumol H2 oxidized/min per mg protein. The enzyme was shown to be homogenous by polyacrylamide gel electrophoresis. Its molecular weight and isoelectric point were determined to be 205 000 and 4.85 respectively. The oxidized hydrogenase, as purified under aerobic conditions, was of high stability but not reactive. Reductive activation of the enzyme by H2, in the presence of catalytic amounts of NADH, or by reducing agents caused the hydrogenase to become unstable. The purified enzyme, in its active state, was able to reduce NAD, FMN, FAD, menaquinone, ubiquinone, cytochrome c, methylene blue, methyl viologen, benzyl viologen, phenazine methosulfate, janus green, 2,6-dichlorophenoloindophenol, ferricyanide and even oxygen. In addition to hydrogenase activitiy, the enzyme exhibited also diaphorase and NAD(P)H oxidase activity. The reversibility of hydrogenase function (i.e. H2 evolution from NADH, methyl viologen and benzyl viologen) was demonstrated. With respect to H2 as substrate, hydrogenase showed negative cooperativity; the Hill coefficient was n = 0.4. The apparent Km value for H2 was found to be 0.037 mM. The absorption spectrum of hydrogenase was typical for non-heme iron proteins, showing maxima (shoulders) at 380 and 420 nm. A flavin component could be extracted from native hydrogenase characterized by its absorption bands at 375 and 447 nm and a strong fluorescense at 526 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号