首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The diatom Cyclotella meneghiniana Kütz. (SAG 1020‐a) was cultured under high‐light (HL) and low‐light (LL) conditions with either high (12 μM) or low (1 μM) iron in the media. Changes in cell morphology, especially cell volume and chloroplast size, were observed in cells grown under low iron. In contrast, HL had a much stronger influence on the photosynthetic apparatus. PSII function was unimpaired under lowered iron supply, but its quantum efficiency and reoxidation rate were reduced under HL conditions. As reported before, HL induced changes in antenna polypeptide composition. Especially the amount of Fcp6, an antenna protein related to LI818 and known to be involved in photoprotection, was increased under HL but was significantly reduced under lowered iron. The diatoxanthin content correlated with the amount of Fcp6 in isolated FCPa antenna complexes and was thus increased under HL and reduced under low iron as well. While the diatoxanthin (Dt) content of whole cells was enhanced under HL, no decrease was observed under lowered iron supply, ruling out the possibility that the decreased amounts in FCPa were due to a hampered diadinoxanthin de‐epoxidase activity under these conditions. Thus, diatoxanthin not bound to FCPa has to be responsible for protection under the slight reduction in iron supply used here.  相似文献   

2.
《BBA》2022,1863(7):148589
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes.In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.  相似文献   

3.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   

4.
To avoid the photodamage, cyanobacteria regulate the distribution of light energy absorbed by phycobilisome antenna either to photosystem II or to photosystem I (PSI) upon high light acclimation by the process so-called state transition. We found that an alternative PSI subunit, PsaK2 (sll0629 gene product), is involved in this process in the cyanobacterium Synechocystis sp. PCC 6803. An examination of the subunit composition of the purified PSI reaction center complexes revealed that PsaK2 subunit was absent in the PSI complexes under low light condition, but was incorporated into the complexes during acclimation to high light. The growth of the psaK2 mutant on solid medium was inhibited under high light condition. We determined the photosynthetic characteristics of the wild type strain and the two mutants, the psaK1 (ssr0390) mutant and the psaK2 mutant, using pulse amplitude modulation fluorometer. Non-photochemical quenching, which reflects the energy transfer from phycobilisome to PSI in cyanobacteria, was higher in high light grown cells than in low light grown cells, both in the wild type and the psaK1 mutant. However, this change of non-photochemical quenching during acclimation to high light was not observed in the psaK2 mutant. Thus, PsaK2 subunit is involved in the energy transfer from phycobilisome to PSI under high light condition. The role of PsaK2 in state transition under high light condition was also confirmed by chlorophyll fluorescence emission spectra determined at 77 K. The results suggest that PsaK2-dependent state transition is essential for the growth of this cyanobacterium under high light condition.  相似文献   

5.
A significant part of global primary productivity is provided by cyanobacteria, which are abundant in most marine and freshwater habitats. In many oceanographic regions, however, the concentration of iron can be so low that it limits growth. Cyanobacteria respond to this condition by expressing a number of iron stress inducible genes, of which the isiA gene encodes a chlorophyll-binding protein known as IsiA or CP43'. It was recently shown that 18 IsiA proteins encircle trimeric photosystem I (PSI) under iron-deficient growth conditions. We report here that after prolonged growth of Synechocystis PCC 6803 in an iron-deficient medium, the number of bound IsiA proteins can be much higher than previously known. The largest complexes bind 12-14 units in an inner ring and 19-21 units in an outer ring around a PSI monomer. Fluorescence excitation spectra indicate an efficient light harvesting function for all PSI-bound chlorophylls. We also find that IsiA accumulates in cyanobacteria in excess of what is needed for functional light harvesting by PSI, and that a significant part of IsiA builds supercomplexes without PSI. Because the further decline of PSI makes photosystem II (PSII) increasingly vulnerable to photooxidation, we postulate that the surplus synthesis of IsiA shields PSII from excess light. We suggest that IsiA plays a surprisingly versatile role in cyanobacteria, by significantly enhancing the light harvesting ability of PSI and providing photoprotection for PSII.  相似文献   

6.
Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.  相似文献   

7.
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

8.
The bioavailable iron in many aquatic ecosystems is extremely low, and limits the growth and photosynthetic activity of phytoplankton. In response to iron limitation, a group of chlorophyll-binding proteins known as iron stress-induced proteins are induced and serve as accessory light-harvesting components for photosystems under iron limitation. In the present study, we investigated physiological features of Acaryochloris marina in response to iron-deficient conditions. The growth doubling time under iron-deficient conditions was prolonged to ~3.4 days compared with 1.9 days under normal culture conditions, accompanied with dramatically decreased chlorophyll content. The isolation of chlorophyll-binding protein complexes using sucrose density gradient centrifugation shows six main green bands and three main fluorescence components of 712, 728, and 748 nm from the iron-deficient culture. The fluorescence components of 712 and 728 nm co-exist in the samples collected from iron-deficient and iron-replete cultures and are attributed to Chl d-binding accessory chlorophyll-binding antenna proteins and also from photosystem II. A new chlorophyll-binding protein complex with its main fluorescence peak at 748 nm was observed and enriched in the heaviest fraction from the samples collected from the iron-deficient culture only. Combining western blotting analysis using antibodies of CP47 (PSII), PsaC (PSI) and IsiA and proteomic analysis on an excised protein band at ~37 kDa, the heaviest fraction (?F6) isolated from iron-deficient culture contained Chl d-bound PSI–IsiA supercomplexes. The PSII-antenna supercomplexes isolated from iron-replete conditions showed two fluorescence peaks of 712 and 728 nm, which can be assigned as 6-transmembrane helix chlorophyll-binding antenna and photosystem II fluorescence, respectively, which is supported by protein analysis of the fractions (F5 and F6).  相似文献   

9.
Phycobilisomes (PBS) are the major photosynthetic antenna complexes in cyanobacteria and red algae. In the red microalga Galdieria sulphuraria, action spectra measured separately for photosynthetic activities of photosystem I (PSI) and photosystem II (PSII) demonstrate that PBS fraction attributed to PSI is more sensitive to stress conditions and upon nitrogen starvation disappears from the cell earlier than the fraction of PBS coupled to PSII. Preillumination of the cells by actinic far-red light primarily absorbed by PSI caused an increase in the amplitude of the PBS low-temperature fluorescence emission that was accompanied by the decrease in PBS region of the PSI 77 K fluorescence excitation spectrum. Under the same conditions, fluorescence excitation spectrum of PSII remained unchanged. The amplitude of P700 photooxidation in PBS-absorbed light at physiological temperature was found to match the fluorescence changes observed at 77 K. The far-red light adaptations were reversible within 2-5min. It is suggested that the short-term fluorescence alterations observed in far-red light are triggered by the redox state of P700 and correspond to the temporal detachment of the PBS antenna from the core complexes of PSI. Furthermore, the absence of any change in the 77 K fluorescence excitation cross-section of PSII suggests that light energy transfer from PBS to PSI in G. sulphuraria is direct and does not occur through PSII. Finally, a novel photoprotective role of PBS in red algae is discussed.  相似文献   

10.
Anna Drozak  El?bieta Romanowska 《BBA》2006,1757(11):1539-1546
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

11.
Wang Q  Jantaro S  Lu B  Majeed W  Bailey M  He Q 《Plant physiology》2008,147(3):1239-1250
The high light-inducible polypeptides (HLIPs) are critical for survival under high light (HL) conditions in Synechocystis PCC 6803. In this article, we determined the localization of all four HLIPs in thylakoid protein complexes and examined effects of hli gene deletion on the photosynthetic protein complexes. The HliA and HliB proteins were found to be associated with trimeric photosystem I (PSI) complexes and the Slr1128 protein, whereas HliC was associated with PsaL and TMP14. The HliD was associated with partially dissociated PSI complexes. The PSI activities of the hli mutants were 3- to 4-fold lower than that of the wild type. The hli single mutants lost more than 30% of the PSI trimers after they were incubated in intermediate HL for 12 h. The reduction of PSI trimers were further augmented in these cells by the increase of light intensity. The quadruple hli deletion mutant contained less than one-half of PSI trimers following 12-h incubation in intermediate HL. It lost essentially all of the PSI trimers upon exposure to HL for 12 h. Furthermore, a mutant lacking both PSI trimers and Slr1128 showed growth defects similar to that of the quadruple hli deletion mutant under different light conditions. These results suggest that the HLIPs stabilize PSI trimers, interact with Slr1128, and protect cells under HL conditions.  相似文献   

12.
The main chlorophyll a/c light harvesting complex of the diatom Cyclotella cryptica was isolated by sucrose density gradient centrifugation. It consisted of two polypeptides of Mrs 18000 and 22000. Both polypeptides and fragments thereof, obtained by formic acid treatment, were blocked at their N-ter-mini. An antiserum raised against the two subunits selectively immunolabeled the thylakoid within the chloroplasts. The subunits were nuclear encoded and could be immunoprecipitated from poly (A)+ RNA as precursor proteins in the Mr range of 20000 to 24000. The existence of minor chlorophyll protein complexes and their possible function in light climate adaptation processes was investigated in cells adapted to low light and high light conditions. Low light grown cells contained more fucoxanthin and less β-carotene relative to chlorophyll a than high light adapted cells. The xanthophyll cycle pigments diatoxanthin and diadinoxanthin increased five-fold relative to chlorophyll a under high light conditions. Western-immunoblotting experiments with antisera raised against several chlorophyll a/b and chlorophyll a/c antenna complexes demonstrated that, beside the dominating chlorophyll a/c light harvesting complex, minor antenna complexes might exist, which, in part, seem to react to the light climate applied.  相似文献   

13.
Beer A  Gundermann K  Beckmann J  Büchel C 《Biochemistry》2006,45(43):13046-13053
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of the latter polypeptide is enhanced when FCPa is isolated from algae grown under HL conditions. This increase in Fcp6/7 polypeptides is accompanied by an increase in the pool of xanthophyll cycle pigments, diadinoxanthin and diatoxanthin, and a concomitant decrease in fucoxanthin content. In addition, the de-epoxidation ratio, i.e., the amount of diatoxanthin in relation to the pool of xanthophyll cycle pigments, is increased by a factor of 2. With regard to fluorescence yield, HL FCPa was quenched in comparison to LL FCPa. This is in accordance with the larger amount of diatoxanthin that is bound, which is supposed to act as a quencher like zeaxanthin in higher plants. Thus, we conclude that the enhanced content of diatoxanthin in FCPa plays a protective role, which is paralleled by a weakened light harvesting function due to a smaller amount of fucoxanthin.  相似文献   

14.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

15.
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light‐harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1–4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1–a4 dimer bound on the PsaB–PsaI–PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI–LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.  相似文献   

16.
With the aim of obtaining information on the degree of flexibility maintained in cyanobacteria in context with their phylogenetic position, Anacystis was grown in the presence of thiosulphate, oxidized in a photosystem I (PSI) dependent reaction (KM 7.4 × 10?3 M thiosulfate). Besides DBMIB, only o-phenanthroline and p-hydroxymercuribenzoate blocked thiosulphate-dependent PSI activity to some extent; iodonitrothymol, DCMU and cyanide had no influence. Growth of Anacystis in the presence of thiosulphate induced a reorganization of the photosynthetic apparatus characterized by a shift in the PSII/PSI ratio in favor of PSI, comparable to low light conditions. Capability for oxygenic photosynthesis never completely disappeared; structural elements of PSII were retained in the membrane to a certain degree. The antenna pigment system signalled high light under conditions of thiosulphate oxidation as judged from the ratio of phycocyanin to chlorophyll. Besides a shift in the ratio of PSII to PSI components, the polypeptide pattern of thylakoids from thiosulphate grown cells shows several additional components compared to the controls and, moreover, higher concentrations of some polypeptides present in the controls, particularly a Mr 41000 polypeptide. The process of thiosulphate oxidation appears bound to the thylakoid membrane.  相似文献   

17.
The changes induced in the photosynthetic apparatus of spinach (Spinacia oleracea L.) seedlings exposed to iron deficiency shortly after germination were characterized with two proteomic approaches coupled with chlorophyll and xanthophyll analysis and in vivo measurements of photosynthesis. During the first 10 d of iron deficiency the concentrations of chlorophyll b and violaxanthin were greatly reduced, but all xanthophylls recovered after 13-17 d of iron deficiency, when both chlorophylls were negatively affected. No new protein was formed in iron-deficient leaves, and no protein disappeared altogether. Photosystem I (PSI) proteins were largely reduced, but the stoichiometry of the antenna composition of PSI was not compromised. On the contrary, PSII proteins were less affected by the stress, but the specific antennae Lhcb4 and Lhcb6, Lhcb2 and its isoform Lhcb1.1 were all reduced, while the concentration of Lhcb3 increased. A strong reduction in thylakoid bending and an altered distribution pattern for the reduced PSI and PSII complexes were observed microscopically in iron-deficient leaves. Supercomplex organization was also affected by the stress. The trimeric organization of Lhcb and the dimerization of Lhca were reduced, while monomerization of Lhcb increased. However, the trimerization of Lhcb was partially recovered after 13-17 d of iron deficiency. In iron-deficient leaves, photosynthesis was strongly inhibited at different light intensities, and a high de-epoxidation status of the xanthophylls was observed, in association with a strong impairment of photochemical efficiency and an increase of heat dissipation as monitored by the non-photochemical quenching of fluorescence. All these negative effects of iron deficiency were attenuated but not fully reversed after again supplying iron to iron-deficient leaves for 7-13 d. These results indicate that iron deficiency has a strong impact on the proteomic structure of spinach photosystems and suggest that, in higher plants, adaptive mechanisms common in lower organisms, which allow rapid changes of the photosystem structure to cope with iron stress, are absent. It is speculated that the observed changes in the monomer-trimer equilibrium of major PSII antennae, which is possibly the result of xanthophyll fluctuations, is a first adaptative adjustment to iron deficiency, and may eventually play a role in light dissipation mechanisms.  相似文献   

18.
Diatoms differ from higher plants by their antenna system, in terms of both polypeptide and pigment contents. A rapid isolation procedure was designed for the membrane-intrinsic light harvesting complexes (LHC) of the diatom Phaeodactylum tricornutum to establish whether different LHC subcomplexes exist, as well to determine an uneven distribution between them of pigments and polypeptides. Two distinct fractions were separated that contain functional oligomeric complexes. The major and more stable complex ( approximately 75% of total polypeptides) carries most of the chlorophyll a, and almost only one type of carotenoid, fucoxanthin. The minor complex, carrying approximately 10-15% of the total antenna chlorophyll and only a little chlorophyll c, is highly enriched in diadinoxanthin, the main xanthophyll cycle carotenoid. The two complexes also differ in their polypeptide composition, suggesting specialized functions within the antenna. The diadinoxanthin-enriched complex could be where the de-epoxidation of diadinoxanthin into diatoxanthin mostly occurs.  相似文献   

19.
《BBA》2020,1861(1):148093
Photosynthetic PSI-LHCI complexes from an extremophilic red alga C. merolae grown under varying light regimes are characterized by decreasing size of LHCI antenna with increasing illumination intensity [1]. In this study we applied time-resolved fluorescence spectroscopy to characterize the kinetics of energy transfer processes in three types of PSI-LHCI supercomplexes isolated from the low (LL), medium (ML) and extreme high light (EHL) conditions. We show that the average rate of fluorescence decay is not correlated with the size of LHCI antenna and is twice faster in complexes isolated from ML-grown cells (~25–30 ps) than from both LL- and EHL-exposed cells (~50–55 ps). The difference is mainly due to a contribution of a long ~100-ps decay component detected only for the latter two PSI samples. We propose that the lack of this phase in ML complexes is caused by perfect coupling of this antenna to PSI core and lack of low-energy chlorophylls in LHCI. On the other hand, the presence of the slow, ~100-ps, fluorescence decay component in LL and EHL complexes may be due to the weak coupling between PSI core and LHCI antenna complex, and due to the presence of particularly low-energy or red chlorophylls in LHCI. Our study has revealed the remarkable functional flexibility of light harvesting strategies that have evolved in the extremophilic red algae in response to harsh or limiting light conditions involving accumulation of low energy chlorophylls that exert two distinct functions: as energy traps or as far-red absorbing light harvesting antenna, respectively.  相似文献   

20.
The acclimation to high light, elevated temperature, and combination of both factors was evaluated in tomato (Solanum lycopersicum cv. M82) by determination of photochemical activities of PSI and PSII and by analyzing 77 K fluorescence of isolated thylakoid membranes. Developed plants were exposed for six days to different combinations of temperature and light intensity followed by five days of a recovery period. Photochemical activities of both photosystems showed different sensitivity towards the heat treatment in dependence on light intensity. Elevated temperature exhibited more negative impact on PSII activity, while PSI was slightly stimulated. Analysis of 77 K fluorescence emission and excitation spectra showed alterations in the energy distribution between both photosystems indicating alterations in light-harvesting complexes. Light intensity affected the antenna complexes of both photosystems stronger than temperature. Our results demonstrated that simultaneous action of high-light intensity and high temperature promoted the acclimation of tomato plants regarding the activity of both photosystems in thylakoid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号