首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diabetes mellitus is the most common endocrine disorder that affects more than 285 million people worldwide. The purpose of this study was to investigate the effect of mesenchymal stem cells (MSCs) from the bone marrow of albino rats, on hyperglycemia, hyperlipidemia, and oxidative stress induced by intraperitoneal injection (i.p.) of alloxan at a dose of 150 mg/kg in rats. Injection of alloxan into rats resulted in a significant increase in serum glucose, total cholesterol, triglyceride, low density lipoprotein cholesterol, and sialic acid level and a significant decrease in serum insulin, high density lipoprotein-cholesterol, vitamin E, and liver glycogen as compared to their corresponding controls. Also, oxidative stress was noticed in pancreatic tissue as evidenced by a significant decrease in glutathione level, superoxide dismutase, glutathione-S-transferase activities, also a significant increase in malondialdehyde and nitric oxide levels when compared to control group. Treatment of diabetic rats with MSCs stem cells significantly prevented these alterations and attenuated alloxan-induced oxidative stress. In conclusion, rat bone marrow harbors cells that have the capacity to differentiate into functional insulin-producing cells capable of controlling hyperglycemia, hyperlipidemia, and oxidative stress in diabetic rats. This may be helpful in the prevention of diabetic complications associated with oxidative stress.  相似文献   

2.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

3.
Effect of methanolic extract of fruits of P. longum (PLM) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in adriamycin (ADR) induced cardiotoxicity in Wistar rats was investigated. PLM was administered to Wistar albino rats in two different doses, by gastric gavage (250 mg/kg and 500 mg/kg) for 21 days followed by ip ADR (15 mg/kg) on 21st day. ADR administration showed significant decrease in the activities of marker enzymes aspartate transaminase, alanine transaminase, lactate dehydrogenase and creatine kinase in heart with a concomitant increase in their activities in serum. A significant increase in lipid peroxide levels in heart of ADR treated rats was also observed. Pretreatment with PLM ameliorated the effect of ADR on lipid peroxide formation and restored activities of marker enzymes. Activities of myocardial antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase along with reduced glutathione were significantly lowered due to cardiotoxicity in rats administered with ADR. PLM pretreatment augmented these endogenous antioxidants. Histopathological studies of heart revealed degenerative changes and cellular infiltrations in rats administered with ADR and pretreatment with PLM reduced the intensity of such lesions. The results indicate that PLM administration offers significant protection against ADR induced oxidative stress and reduces the cardiotoxicity by virtue of its antioxidant activity.  相似文献   

4.
Ferric nitrilotriacetate (Fe-NTA) is a known potent nephrotoxic agent. In this communication, we report the chemopreventive effect of soy isoflavones on renal oxidative stress, toxicity and cell proliferation response in Wistar rats. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) enhances gamma-glutamyl transpeptidase, renal lipid peroxidation, xanthine oxidase and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content, antioxidant enzymes, viz., glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase and phase-II metabolising enzymes such as glutathione-S-transferase and quinone reductase. Fe-NTA treatment also induced tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and thymidine [3H] incorporation into renal DNA. A sharp elevation in the levels of blood urea nitrogen and serum creatinine has also been observed. Treatment of rats orally with soy isoflavones (5 mg/kg body weight and 10 mg/kg body weight) resulted in significant decreases in gamma-glutamyl transpeptidase, lipid peroxidation, xanthine oxidase, H2O2 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content (P < 0.01), glutathione metabolizing enzymes (P < 0.001) and antioxidant enzymes were also returned to normal levels (P < 0.001). Thus, our data suggest that soy isoflavones may be used as an effective chemopreventive agent against Fe-NTA-mediated renal oxidative stress, toxicity and cell proliferation response in Wistar rats.  相似文献   

5.
Hypercholesterolemia and oxidative stress are known to accelerate coronary artery disease and progression of atherosclerotic lesions. In the present study, an attempt was made to evaluate the putative antihypercholesterolemic and antioxidative effects of an ethanolic extract of the oyster mushroom (Pleurotus ostreatus) and chrysin, one of its major components, in hypercholesterolemic rats. Hypercholesterolemia was induced in rats by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg body weight (b.wt.)), which resulted in persistently elevated blood/serum levels of glucose, lipid profile parameters (total cholesterol, triglycerides, low-density lipoprotein-, and very low-density lipoprotein-cholesterol), and of hepatic marker enzymes (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase). In addition, lowered mean activities of hepatic antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and lowered mean levels of nonenzymatic antioxidants (reduced glutathione, vitamin C, and vitamin E) were observed. Oral administration of the mushroom extract (500 mg/kg b.wt.) and chrysin (200 mg/kg b.wt.) to hypercholesterolemic rats for 7 days resulted in a significant decrease in mean blood/serum levels of glucose, lipid profile parameters, and hepatic marker enzymes and a concomitant increase in enzymatic and nonenzymatic antioxidant parameters. The hypercholesterolemia-ameliorating effect was more pronounced in chrysin-treated rats than in extract-treated rats, being almost as effective as that of the standard lipid-lowering drug, lovastatin (10 mg/kg b.wt.). These results suggest that chrysin, a major component of the oyster mushroom extract, may protect against the hypercholesterolemia and elevated serum hepatic marker enzyme levels induced in rats injected with Triton WR-1339.  相似文献   

6.
Obesity is strongly associated with the cause of structural and functional changes of the heart in both human and animal models. Oxidative stress and inflammation play a critical role in the development of obesity-induced cardiac disorders. Curcumin is a natural product from Curcuma Longa with multiple bioactivities. In our previous study, in order to reach better anti-inflammatory and anti-oxidant dual activities, we designed a new mono-carbonyl curcumin analog, Y20, via the structural modification with both trifluoromethyl and bromine. This study was designed to investigate the protective effects of Y20 on obesity-induced cardiac injury and its underlying mechanisms. In high fat diet–fed rats, oral administration of Y20 at 20 mg/kg or curcumin at 50 mg/kg significantly decreased the cardiac inflammation and oxidative stress and eventually improved the cardiac remodeling by mitigating cardiac disorganization, hypertrophy, fibrosis and apoptosis. Y20 at 20 mg/kg showed comparable and even stronger bioactivities than curcumin at 50 mg/kg. The beneficial actions of Y20 are closely associated with its ability to increase Nrf2 expression and inhibit NF-κB activation. Taken together, these results suggest that Y20 may have a great therapeutic potential in the treatment of obesity-induced cardiac injury using Nrf2 and NF-κB as the therapeutic targets for treating obesity-related disorders.  相似文献   

7.
Cyclophosphamide (CP), one of the most widely prescribed antineoplastic drugs could cause a lethal cardiotoxicity. The present study is aimed at evaluating the role of DL-alpha-lipoic acid (LA) in oxidative cardiac damage induced by CP. Adult male Wistar rats were divided into four treatment groups. Two groups received single intraperitoneal injection of CP (200 mg/kg BW) to induce cardiotoxicity, one of these groups received LA treatment (25 mg/kg BW for 10 days). A vehicle treated control group and a LA drug control were also included. Cardiotoxicity, evident from increased activities of serum creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase in CP administered rats, was reversed by LA treatment. CP administered rats showed abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) along with high malondialdehyde levels. However, normalized lipid peroxidation and antioxidant defenses were reported in the LA treated rats. These findings highlight the efficacy of LA as a cytoprotectant in CP induced cardiotoxicity.  相似文献   

8.
Wistar albino rats (150-200 g) were fed raw garlic homogenate orally in three different doses (125, 250, 500 mg/kg/day) for 30 days. Isoproterenol (85 mg/kg, s.c. 2 doses at 24-h interval, animals sacrificed after 24 h of last injection) induced myocardial necrosis in control rats and after 30 days of garlic feeding. Myocardial oxidative stress was evident following isoproterenol administration by reduction in myocardial superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities along with a rise in plasma thiobarbituric acid reactive substances (TBARS). Myocardial necrosis was evident from the light microscopic and ultrastructural changes, along with a rise in plasma lactate dehydrogenase (LDH). Significant preservation of myocardial SOD activity was observed in all the garlic-fed rats. However, there was no significant change in myocardial reduced glutathione level and GPx activity in any of the treated groups. Significant reduction in plasma TBARS and LDH levels was observed in the 500 mg/kg garlic treated group. Isoproterenol-induced myocardial morphological changes were least in the 250 and 500 mg/kg garlic treated groups. The results suggest that chronic oral administration of raw garlic offered protection against isoproterenol-induced myocardial necrosis and associated oxidative stress.  相似文献   

9.
This study evaluated the protective effect of Montilla-Moriles appellation red wine (Cordoba, Spain) on oxidative stress, course and intensity of symptoms in experimental diabetes induced by the injection of streptozotocin in male Wistar rats. The rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) and given water and red wine separately. After 4 weeks of treatment, blood samples were obtained to determine sugar and fructosamine concentrations in blood plasma, serum insulin concentration, and percentage of glycosylated hemoglobin in blood. The kidney, liver, and pancreas were removed to determine lipid peroxidation levels, reduced glutathione content, and antioxidative enzyme activity. A significant increase of glucose concentration in urine was found in the rats after injecting the streptozotocin. The administration of red wine before streptozotocin elevated reduced glutathione content and antioxidative enzyme activity, while lowering the lipid peroxidation level. Moreover, the red wine induced decreased levels of glycemia, plasma fructosamine and percentage of glycosylated hemoglobin, while increasing levels of insulin. These data suggest that red wine has a protective effect against oxidative stress and diabetes induced by streptozotocin.  相似文献   

10.
Free radicals and oxidative stress have been implicated in the etiology of diabetes and its complications. This in vivo study has examined whether subacute administration of pycnogenol, a French pine bark extract containing procyanidins that have strong antioxidant potential, alters biomarkers of oxidative stress in normal and diabetic rats. Diabetes was induced in female Sprague-Dawley rats by a single injection of streptozotocin (90 mg/kg body weight, ip), resulting (after 30 days) in subnormal body weight, increased serum glucose concentrations, and an increase in liver weight, liver/body weight ratios, total and glycated hemoglobin, and serum aspartate aminotransferase activity. Normal and diabetic rats were treated with pycnogenol (10 mg/kg body weight/day, ip) for 14 days. Pycnogenol treatment significantly reduced blood glucose concentrations in diabetic rats. Biochemical markers for oxidative stress were assessed in the liver, kidney, and heart. Elevated hepatic catalase activity in diabetic rats was restored to normal levels after pycnogenol treatment. Additionally, diabetic rats treated with pycnogenol had significantly elevated levels of reduced glutathione and glutathione redox enzyme activities. The results demonstrate that pycnogenol alters intracellular antioxidant defense mechanisms in streptozotocin-induced diabetic rats.  相似文献   

11.
To investigate the protective effects and the possible mechanisms of garlic oil (GO) against N-nitrosodiethylamine (NDEA)-induced hepatocarcinoma in rats, Wistar rats were gavaged with GO (20 or 40 mg/kg) for 1 week, and then were gavaged with GO and NDEA (10 mg/kg) for the next 20 weeks. The changes of morphology, histology, the biochemical indices of serum, and DNA oxidative damage of liver were examined to assess the protective effects. Lipid peroxidation (LPO), antioxidant defense system, and apoptosis-related proteins were measured to investigate potential mechanisms. At the end of the study (21 weeks), GO administration significantly inhibited the increase of the nodule incidence and average nodule number per nodule-bearing liver induced by NDEA, improved hepatocellular architecture, and dramatically inhibited NDEA-induced elevation of serum biochemical indices (alanine aminotransferase , aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase) and hepatic 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in a dose-dependent manner. The mechanistic studies demonstrated that GO counteracted NDEA-induced oxidative stress in rats illustrated by the restoration of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) levels, and the reduction of the malondialdehyde (MDA) levels in liver. Furthermore, the mRNA and protein levels of Bcl-2, Bcl-xl, andβ-arrestin-2 were significantly decreased whereas those of Bax and caspase-3 were significantly increased. These data suggest that GO exhibited significant protection against NDEA-induced hepatocarcinogenesis, which might be related with the enhancement of the antioxidant activity and the induction of apoptosis.  相似文献   

12.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

13.
Increasing interest in the role of oxidative stress and beta-carotene in disease and prevention led us to examine the results of beta-carotene's administration in diabetic rats, a model for high-oxidative stress. In this experiment, amounts of lipid peroxidation, glutathione, and glutathione disulfide, and activity levels of catalase, glutathione peroxidase, glutathione reductase, superoxide dismutase, and gamma-glutamyl transpeptidase were measured in the liver, kidney, and heart of Sprague-Dawley rats with streptozotocin-induced diabetes, and after treatment with 10 mg/kg/day of beta-carotene for 14 days. Beta-carotene treatment resulted in the reversal of the diabetes-induced increase in hepatic and cardiac catalase activity, the decreased levels of glutathione disulfide in the heart, and the increased cardiac and renal levels of lipid peroxidation. Treatment with beta-carotene exacerbated the increased glutathione peroxidase activity in the heart and the decreased catalase activity in the kidneys. In contrast to reduced hepatic glutathione levels in untreated diabetic rats, beta-carotene treatment increased glutathione levels in diabetic rats. Increased hepatic gamma-glutamyl transpeptidase activity in diabetic rats was not reduced by treatment. Thus, beta-carotene therapy for 14 days prevented/reversed some, but not all, diabetes-induced changes in oxidative stress parameters.  相似文献   

14.
The aim of the present work is to evaluate the effect of a heparin derivative, low molecular weight heparin (LMWH) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in adriamycin (ADR) induced cardiac and hepatic toxicity. Male Wistar rats (140 +/- 10 g) were divided into four groups: untreated control (group I), ADR group (a single dose intravenous injection of 7.5 mg/kg ADR--group II), LMWH control (300 microg/day per rat s.c. for 1 week--group III) and ADR plus LMWH group (7.5 mg/kg ADR on day 1 of study period followed by LMWH treatment, 300 microg/day per rat commencing on day 8 and continued for a week. At the end of the 2-week experimental period, all animals were terminated. Cellular damage was assessed in terms of serum and tissue lactate dehydrogenase (LDH), aminotransferases and alkaline phosphatase (ALP) activities. Creatine phosphokinase (CPK) was assessed in the serum and heart tissue. The role of LMWH in altering the oxidative stress in ADR-induced toxicity was evaluated on the basis of its influence on cardiac and hepatic lipid peroxidation and antioxidant status (enzymatic and non-enzymatic)--superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx), reduced glutathione (GSH), alpha-tocopherol (Vitamin E) and ascorbate (Vitamin C). LMWH administration to ADR-induced rats prevented the rise in serum and tissue levels of LDH, aminotransferases and ALP, while these parameters were significantly elevated in the ADR group in comparison with the control group. Cardiotoxicity indicated by rise in serum CPK in the ADR group was attenuated by LMWH treatment in group IV. LMWH decreased the cardiac and hepatic lipid peroxidation induced by ADR. Histologic examination revealed that the ADR-induced deleterious changes in the heart and liver tissues were offset by LMWH treatment. Restoration of cellular normalcy accredits LMWH with cytoprotective role in adriamycin-induced cardiac and hepatic toxicity.  相似文献   

15.
In the present study, the effect of succinic acid monoethyl ester (EMS) on the pattern of lipids and lipoproteins in streptozotocin-nicotinamide induced type 2 diabetes was investigated. Type 2 diabetes was induced in male Wistar rats by single intraperitoneal injection (i.p.) of 45 mg/kg streptozotocin, 15 min after the i.p administration of 110 mg/kg body weight of nicotinamide. The carboxylic nutrient EMS was administered intraperitonially at a dose of 8 Μmol/g body weight for 30 days. At the end of experimental period, the effect of EMS on plasma glucose, insulin, thiobarbituric acid reactive substances (TBARS) and hydroperoxide (HP) and serum triglycerides (TG), phospholipids (PL), free fatty acids (FFA), total cholesterol (TC), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and the percentage of antiatherogenic index (AAI) (ratio of HDL-C to total cholesterol) were studied. Administration of EMS to diabetic rats resulted in a signi. cant reduction in the elevated levels of plasma glucose, TBARS and hydroperoxides as well as TG, PL, FFA, TC, VLDL-C and LDC-C levels. The decreased plasma insulin and serum HDL-C and percentage of AAI in diabetic rats were also reversed towards near normal. The effect produced by EMS was compared with metformin, a reference drug. The results indicates that the administration of EMS and metformin to nicotinamide-streptozotocin diabetic rats normalized plasma glucose, insulin concentrations and caused marked improvement in altered lipids, lipoprotein and lipid peroxidation markers during diabetes. Our results show the antihyperlipidemic properties of EMS and metformin in addition to its antidiabetic action. Moreover, the antihyperlipidemic effect could represent a protective mechanism against the development of atherosclerosis.  相似文献   

16.
Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.  相似文献   

17.
The present study was aimed to find out the protective effect of ethanolic extract of E. ribes fruits on homocysteine, lactate dehydrogenase (LDH) and lipid profile in serum, lipid peroxidation (LPO) and non-enzymatic antioxidant glutathione (GSH) levels in brain homogenates and histopathological examination of brain tissue in methionine (1 g/kg body weight, orally for 30 days) induced hyperhomocysteinemic rats. A significant increase in homocysteine, LDH, total cholesterol, triglycerides, low density lipoprotein (LDL-C) and very low density lipoprotein (VLDL-C) levels was observed in serum. Increased LPO levels in brain homogenates with reduced serum high density lipoprotein (HDL-C) levels and decreased GSH content were other salient features observed in methionine treated pathogenic control rats. Administration of ethanolic E. ribes extract (100 mg/kg body weight, orally) for 30 days to methionine-induced hyperhomocysteinemic rats produced a significant decrease in the levels of homocysteine, LDH, total cholesterol, triglycerides, LDL-C, VLDL-C in serum and LPO levels in brain homogenates with significant increase in serum HDL-C levels and GSH content in brain homogenates, when compared with pathogenic control rats. Biochemical observations were further substantiated with histological examination of brain. Degenerative changes of neuronal cells in methionine treated rats were minimized to near normal morphology by ethanolic E. ribes extract administration as evident by histopathological examination. The results provide clear evidence for the first time, that ethanolic E. ribes extract treatment enhances the antioxidant defense against methionine-induced hyperhomocysteinemia and oxidative stress in brain.  相似文献   

18.
The present work was focused to evaluate the ameliorative property of aqueous extract of Trichosanthes dioica fruit (AQ T. dioica fruit) against arsenic-induced toxicity in male Wistar albino rats. AQ T. dioica fruit was administered orally to rats at 50 and 100 mg/kg body weight for 20 consecutive days prior to oral administration of sodium arsenite (10 mg/kg) for 10 days. Then the rats were sacrificed for the evaluation of body weights, organ weights, hematological profile, serum biochemical profile, and hepatic and renal antioxidative parameters viz. lipid peroxidation, reduced and oxidized glutathione, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and DNA fragmentation. Pretreatment with AQ T. dioica fruit at both doses markedly and significantly normalized body weights, organ weights, hematological profiles, and serum biochemical profile in arsenic-treated animals. Further, AQ T. dioica fruit pretreatment significantly modulated all the aforesaid hepatic and renal biochemical perturbations and reduced DNA fragmentation in arsenic-intoxicated rats. Therefore, from the present findings, it can be concluded that T. dioica fruit possessed remarkable value in amelioration of arsenic-induced hepatic and renal toxicity, mediated by alleviation of arsenic-induced oxidative stress by multiple mechanisms in male albino rats.  相似文献   

19.
The antioxidant effect of the ethanolic extract of Hemidesmus indicus R.Br. root (EHI), an indigenous Ayurvedic medicinal plant in India, was studied in rats with ethanol-induced nephrotoxicity. Administering 5 g/kg body weight/day of ethanol for 60 days to male Wistar rats resulted in significantly elevated levels of serum urea, creatinine and uric acid as well as kidney thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) and conjugated dienes (CD) as compared to those of the experimental control rats. Decreased levels of kidney superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), vitamin C and vitamin E were also observed on alcohol administration as compared with those of the experimental control rats. EHI was administered at a dose of 500 mg/kg body weight/day for the last 30 days of the experiment to rats with ethanol-induced kidney injury, which significantly decreased the levels of serum urea, uric acid and creatinine as well as kidney TBARS, LOOH and CD and significantly elevated the activities of SOD, CAT, GPx, GSH, vitamin C and vitamin E in kidney as compared to that of untreated ethanol-administered rats. Histopathological observations also correlated with the biochemical parameters. Thus, the data indicate that treatment with EHI offers protection against free radical-mediated oxidative stress in kidney of animals with ethanol-induced nephrotoxicity.  相似文献   

20.
Sanchi, also known as Radix Notoginseng, is a Chinese traditional medicine prepared from roots of the herb Panax notoginseng. Sanchi is traditionally used as a hemostatic to control internal and external bleeding but also shows diverse bioactivities that include increasing coronary blood flow and reducing myocardial oxygen consumption and blood pressure. Although research into the potential cardioprotective effects of Sanchi is ongoing in the field of traditional Chinese medicine, we sought to explore potential benefits in cardiovascular disorders associated with excess cholesterol and hyperlipidemia. We have investigated the effects of Sanchi as a dietary supplement on hyperlipidemia and oxidative stress in male Sprague-Dawley rats maintained on a high-fat diet. Diets were supplemented with Sanchi at 0.25%, 0.5% and 1% (w/w) for four weeks, while control animals received no supplement. Sanchi administration to hyperlipidemic rats resulted in a significant decline in serum levels of total cholesterol, triglycerides and low density lipoprotein-cholesterol, with an increase in serum high-density lipoprotein-cholesterol levels. Treated animals also showed reduced levels of hepatic HMG-CoA reductase. Furthermore, Sanchi improved hepatic antioxidant status as assessed by superoxide dismutase and glutathione peroxidase activities and reduced levels of lipid peroxidation. These results suggest that Sanchi consumption can improve lipid profiles, inhibit peroxidation, and increase the activity of antioxidant enzymes, and is thereby likely to reduce the risk of coronary heart disease associated with hyperlipidemia and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号