首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.  相似文献   

2.
Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a β-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G > A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T > G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T > G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations.  相似文献   

3.
Two Tay-Sachs disease (TSD) patients of French-Canadian origin were shown by Myerowitz and Hogikyan to be homozygous for a 7.6-kb deletion mutation at the 5' end of the hexosaminidase A α-subunit gene. In order to determine whether all French-Canadian TSD patients were homozygotes for the deletion allele and to assess the geographic origins of TSD in this population, we ascertained 12 TSD families of French-Canadian origin and screened for occurrence of mutations associated with infantile TSD. DNA samples were obtained from 12 French-Canadian TSD families. Samples were analyzed using polymerase-chain-reaction (PCR) amplification followed by hybridization to allele-specific oligonucleotides (ASO) or by restriction analysis of PCR products. In some cases Southern analysis of genomic DNA was performed. Eighteen of the 22 independently segregating mutant chromosomes in this sample carried the 7.6-kb deletion mutation at the 5' end of the gene. One chromosome carried the 4-nucleotide insertion in exon 11 (a “Jewish” mutation). In this population no individuals were detected who had the substitution at the splice junction of exon 12 previously identified in Ashkenazi Jews. One chromosome carried an undescribed B1 mutation; this allele came from a parent of non-French-Canadian origin. Patients in three families carried TSD alleles different from any of the above mutations. The 5' deletion mutation clusters in persons originating in southeastern Quebec (Gaspé) and adjacent counties of northern New Brunswick.  相似文献   

4.
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype.  相似文献   

5.
Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.  相似文献   

6.
Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.  相似文献   

7.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the beta-hexosaminidase A (Hex A) alpha-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the alpha-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined for 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families.  相似文献   

8.
Mutations of two enzyme genes, HPRT1 encoding hypoxanthine guanine phosphoribosyltransferase (HPRT) and PRPS1 encoding a catalytic subunit (PRS-I) of phosphoribosylpyrophosphate synthetase, cause X-linked inborn errors of purine metabolism. Analyzing these two genes, we have identified three HPRT1 mutations in Lesch-Nyhan families following our last report. One of them, a new mutation involving the deletion of 4224 bp from intron 4 to intron 5 and the insertion of an unknown 28 bp, has been identified. This mutation resulted in an enzyme polypeptide with six amino acids deleted due to abnormal mRNA skipping exon 5. The other HPRT1 mutations, a single base deletion (548delT, 183fs189X), and a point mutation causing a splicing error (532+1G>A, 163fs165X) were detected first in Japanese patients but have been reported in European families. On the other hand, in the analysis of PRPS1, no mutation was identified in any patient.  相似文献   

9.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

10.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   

11.
Levanat S  Musani V  Cvok ML  Susac I  Sabol M  Ozretic P  Car D  Eljuga D  Eljuga L  Eljuga D 《Gene》2012,498(2):169-176
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.  相似文献   

12.
Peng H  Zhang Y  Long Z  Zhao D  Guo Z  Xue J  Xie Z  Xiong Z  Xu X  Su W  Wang B  Xia K  Hu Z 《Gene》2012,502(2):168-171
Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes.  相似文献   

13.
Mutations at the hexosaminidase A (HEXA) gene which cause Tay-Sachs disease (TSD) have elevated frequency in the Ashkenazi Jewish and French-Canadian populations. We report a novel TSD allele in the French-Canadian population associated with the infantile form of the disease. The mutation, a GA transition at the +1 position of intron 7, abolishes the donor splice site. Cultured human fibroblasts from a compound heterozygote for this transition (and for a deletion mutation) produce no detectable HEXA mRNA. The intron 7+1 mutation occurs in the base adjacent to the site of the adult-onset TSD mutation (G805A). In both mutations a restriction site for the endonuclease EcoRII is abolished. Unambiguous diagnosis, therefore, requires allele-specific oligonucleotide hybridization to distinguish between these two mutant alleles. The intron 7+1 mutation has been detected in three unrelated families. Obligate heterozygotes for the intron 7+1 mutation were born in the Saguenay-Lac-St-Jean region of Quebec. The most recent ancestors common to obligate carriers of this mutation were from the Charlevoix region of the province of Quebec. This mutation thus has a different geographic centre of diffusion and is probably less common than the exon 1 deletion TSD mutation in French Canadians. Neither mutation has been detected in France, the ancestral homeland of French Canada.  相似文献   

14.
Infantile Tay-Sachs disease (TSD) is caused by mutations in the HEXA gene that result in the complete absence of beta-hexosaminidase A activity. It is well known that an elevated frequency of TSD mutations exists among Ashkenazi Jews. More recently it has become apparent that elevated carrier frequencies for TSD also occur in several other ethnic groups, including Moroccan Jews, a subgroup of Sephardic Jews. Elsewhere we reported an in-frame deletion of one of the two adjacent phenylalanine codons at position 304 or 305 (delta F304/305) in one HEXA allele of a Moroccan Jewish TSD patient and in three obligate carriers from six unrelated Moroccan Jewish families. We have now identified two additional mutations within exon 5 of the HEXA gene that account for the remaining TSD alleles in the patient and carriers. One of the mutations is a novel C-to-G transversion, resulting in a replacement of Tyr180 by a stop codon. The other mutation is a G-to-A transition resulting in an Arg170-to-Gln substitution. This mutation is at a CpG site in a Japanese infant with Tay-Sachs disease and was described elsewhere. Analysis of nine obligate carriers from seven unrelated families showed that four harbor the delta F304/305 mutation, two the Arg170----Gln mutation, and one the Tyr180----Stop mutation. We also have developed rapid, nonradioactive assays for the detection of each mutation, which should be helpful for carrier screening.  相似文献   

15.
目的:探讨陕西汉族人群中LKB1基因位点rs741765(380CT)及rs6510599(459GA)单核苷酸多态性(SNPs)与2型糖尿病遗传易感性及相关临床代谢指标的关系。方法:采用等位基因特异性引物PCR(SASP-PCR)对2型糖尿病患者130例及健康对照组100例进行LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)两个位点进行基因多态性筛查,并测序鉴定,分析其基因多态性位点与2型糖尿病临床代谢指标关系。结果:rs741765(380CT)基因突变情况:2型糖尿病患者TT基因型频率显著高于健康对照组(P=0.023);TT基因2型糖尿病组中糖化血红蛋白水平及低密度脂蛋白胆固醇水平在型中明显升高(P=0.030;P=0.002);健康对照组中,空腹血糖水平在TT基因型中明显升高(P=0.011)。rs6510599(459GA)基因突变情况:AA基因型频率在2型糖尿病组及健康对照组间无显著性差异(P0.05);该基因位点与临床指标亦无相关性(P0.05)。结论:陕西汉族人群中LKB1基因内含子6 rs741765(380CT)及内含子1 rs6510599(459GA)存在基因多态性。LKB1基因内含子6 rs741765(380CT)基因多态性与2型糖尿病的发病有相关性。LKB1基因内含子1 rs6510599(459GA)基因多态性与2型糖尿病的发病无相关性。  相似文献   

16.
The level of -hexosaminidase activity in plasma and leukocytes and the frequency of three known HEXB mutations were studied in an Argentinean deme with high incidence of infantile Sandhoff disease. Two mutations were previously identified in one of two Sandhoff patients from the region, a splice mutation, IVS-2+1 GA, and a 4-bp deletion, CTTT782–785. These mutations, and a 16kb deletion from the 5' end of the HEXB gene common in non-Argentineans, were screened in 9 Sandhoff patients (all unrelated), 24 obligate heterozygotes, 33 additional individuals belonging to families with affected members, and 64 randomly ascertained individuals from the high risk region. Of 31 independent alleles examined, including those of the two patients previously reported, 30 had the IVS-2 splice mutation and only the originally reported patient had the CTTT deletion. The 16-kb deletion was not observed. Further, among the 57 unaffected members of families with a previous history of Sandhoff disease, and absolute correlation was found between carrier diagnosis by enzyme assay of leukocytes and the DNA-based tests for mutation. One of the 64 controls was classified as a carrier by enzyme assay but did not have one of the three mutations screened. We conclude that a single mutation predominates in this Argentinean population and that the DNA-based test can be an effective supplement or alternative to enzyme-based testing.  相似文献   

17.
Minami SB  Masuda S  Usui S  Mutai H  Matsunaga T 《Gene》2012,501(2):193-197
It is rarely reported that two distinct genetic mutations affecting hearing have been found in one family. We report on a family exhibiting comorbid mutation of GJB2 and WFS1. A four-generation Japanese family with autosomal dominant sensorineural hearing loss was studied. In 7 of the 24 family members, audiometric evaluations and genetic analysis were performed. We detected A-to-C nucleotide transversion (c.2576G>C) in exon 8 of WFS1 that was predicted to result in an arginine-to-proline substitution at codon 859 (R859P), G-to-A transition (c.109G>A) in exon 2 of GJB2 that was predicted to result in a valine-to-isoleucine substitution at codon 37 (V37I), and C-to-T transition (c.427C>T) in exon 2 of GJB2 that was predicted to result in an arginine-to-tryptophan substitution at codon 143 (R143W). Two individuals who had heterozygosity of GJB2 mutations and heterozygosity of WFS1 mutations showed low-frequency hearing loss. One individual who had homozygosity of GJB2 mutation without WFS1 mutation had moderate, gradual high tone hearing loss. On the other hand, a moderate flat loss configuration was seen in one individual who had compound heterozygosity of GJB2 and heterozygosity of WFS1 mutations. Our results indicate that the individual who has both GJB2 and WFS1 mutations can show GJB2 phenotype.  相似文献   

18.
The hyperinsulinism-hyperammonemia syndrome (HHS) has been shown to result from 'gain-of-function' mutations of the glutamate dehydrogenase (GlDH) gene, GLUD1. In the original report, all mutations were found in a narrow range of 27 base pairs within exons 11 and 12 which predicted an effect on the presumed allosteric domain of the enzyme and all these mutations were associated by a diminished inhibitory effect of guanosine triphosphate (GTP) on GlDH activity. We have investigated 14 patients from seven European families with mild hyperinsulinism. In four families, more than one member was affected. In eight cases hyperammonemia was documented, and eight cases had signs of significant leucine sensitivity. In one of the families, a novel heterozygous missense mutation in exon 6 [c.833C>T (R221C)] was detected, and in all other cases from six unrelated families the novel heterozygous missense mutation c.978G>A (R269H) was found in exon 7. When GIDH activity was measured in lymphocytes isolated from affected patients, both mutations were shown to result in a normal basal activity but a diminished sensitivity to GTP. It is the first time that this effect is reported for mutations located in the presumed catalytic site and outside the GTP allosteric domain of the enzyme. The observation of the high prevalence of the exon 7 mutation both in familial and sporadic cases of HHS suggests a mutation hot spot and justifies a mutation screening for this novel mutation by mismatch PCR-based restriction enzyme digestion in patients with hyperinsulinism.  相似文献   

19.
Krabbe disease (OMIM #245200) is a rare autosomal recessive leukodystrophy caused by deficiency of galactocerebrosidase (GALC) activity. We identified four novel mutations of the GALC gene in two unrelated Chinese families with Krabbe disease: one insertion mutation, c.1836_1837insT, and one nonsense mutation, c.599C>A (p.S200X), in an infantile patient, and one deletion mutation, c.1911+1_1911+5delGTAAG, and one missense mutation, c.2041G>A, in an adult late-onset patient. This is the first identification of GALC mutations in the Chinese population.  相似文献   

20.
BACKGROUND: Congenital isolated thyrotropin (TSH) deficiency is an unusual condition characterized by low levels of thyroid hormones and TSH, usually presenting early typical signs of severe hypothyroidism. Five different beta-TSH mutations have been described so far. While 4 of them affect only consanguineous families, a frameshift mutation in exon 3 (C105fs114X) has been found also in nonconsanguineous families. OBJECTIVE: The aim of the present study was to characterize beta-TSH mutations in Argentinean patients with congenital central hypothyroidism (CCH) and to emphasize the importance of early biochemical and molecular diagnosis of this disorder. PATIENTS AND METHODS: We investigated 8 Argentinean children (3 boys, 5 girls) from 7 unrelated families with CCH based upon low levels of T(4) and T(3), and low basal and stimulated TSH levels. Mutation characterizations for the beta-TSH gene were performed by PCR amplification followed by sequence and restriction enzyme analysis with SNABI in the patients, 9 parents and in 100 newborn children. RESULTS: All patients presented the same homozygous mutation in exon 3 of the beta-TSH gene (C105fs114X), the 9 studied parents were heterozygous for the same mutation and 1 carrier was found in the 100 studied newborns. CONCLUSION: Our findings show that the C105fs114X mutation is prevalent in our population and may constitute a hot spot at codon 105 in the beta-TSH gene. Since this mutation is easily demonstrable by a SNABI digestion in DNA amplified from dried blood spots, its investigation would be indicated in patients in our milieu with clinical and biochemical features of CCH, allowing early L-thyroxine (LT(4)) replacement and genetic counseling of the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号