首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cotruvo JA  Stubbe J 《Biochemistry》2011,50(10):1672-1681
Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that this RNR is active with both diferric-tyrosyl radical (Fe(III)(2)-Y(?)) and dimanganese(III)-Y(?) (Mn(III)(2)-Y(?)) cofactors in the β2 subunit, NrdF [Cotruvo, J. A., Jr., and Stubbe, J. (2010) Biochemistry 49, 1297-1309]. Here we demonstrate, by purification of this protein from its endogenous levels in an E. coli strain deficient in its five known iron uptake pathways and grown under iron-limited conditions, that the Mn(III)(2)-Y(?) cofactor is assembled in vivo. This is the first definitive determination of the active cofactor of a class Ib RNR purified from its native organism without overexpression. From 88 g of cell paste, 150 μg of NrdF was isolated with ~95% purity, with 0.2 Y(?)/β2, 0.9 Mn/β2, and a specific activity of 720 nmol min(-1) mg(-1). Under these conditions, the class Ib RNR is the primary active RNR in the cell. Our results strongly suggest that E. coli NrdF is an obligate manganese protein in vivo and that the Mn(III)(2)-Y(?) cofactor assembly pathway we have identified in vitro involving the flavodoxin-like protein NrdI, present inside the cell at catalytic levels, is operative in vivo.  相似文献   

2.
Zhang Y  Stubbe J 《Biochemistry》2011,50(25):5615-5623
Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: α (NrdE) and β (NrdF). β contains the metallo-cofactor, essential for the initiation of the reduction process. The RNR genes are organized within the nrdI-nrdE-nrdF-ymaB operon. Each protein has been cloned, expressed, and purified from Escherichia coli. As isolated, recombinant NrdF (rNrdF) contained a diferric-tyrosyl radical [Fe(III)(2)-Y(?)] cofactor. Alternatively, this cluster could be self-assembled from apo-rNrdF, Fe(II), and O(2). Apo-rNrdF loaded using 4 Mn(II)/β(2), O(2), and reduced NrdI (a flavodoxin) can form a dimanganese(III)-Y(?) [Mn(III)(2)-Y(?)] cofactor. In the presence of rNrdE, ATP, and CDP, Mn(III)(2)-Y(?) and Fe(III)(2)-Y(?) rNrdF generate dCDP at rates of 132 and 10 nmol min(-1) mg(-1), respectively (both normalized for 1 Y(?)/β(2)). To determine the endogenous cofactor of NrdF in B. subtilis, the entire operon was placed behind a Pspank(hy) promoter and integrated into the B. subtilis genome at the amyE site. All four genes were induced in cells grown in Luria-Bertani medium, with levels of NrdE and NrdF elevated 35-fold relative to that of the wild-type strain. NrdE and NrdF were copurified in a 1:1 ratio from this engineered B. subtilis. The visible, EPR, and atomic absorption spectra of the purified NrdENrdF complex (eNrdF) exhibited characteristics of a Mn(III)(2)-Y(?) center with 2 Mn/β(2) and 0.5 Y(?)/β(2) and an activity of 318-363 nmol min(-1) mg(-1) (normalized for 1 Y(?)/β(2)). These data strongly suggest that the B. subtilis class Ib RNR is a Mn(III)(2)-Y(?) enzyme.  相似文献   

3.
Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides, and represent the only de novo pathway to provide DNA building blocks. Three different classes of RNR are known, denoted I-III. Class I RNRs are heteromeric proteins built up by α and β subunits and are further divided into different subclasses, partly based on the metal content of the β-subunit. In subclass Ib RNR the β-subunit is denoted NrdF, and harbors a manganese-tyrosyl radical cofactor. The generation of this cofactor is dependent on a flavodoxin-like maturase denoted NrdI, responsible for the formation of an active oxygen species suggested to be either a superoxide or a hydroperoxide. Herein we report on the magnetic properties of the manganese-tyrosyl radical cofactor of Bacillus anthracis NrdF and the redox properties of B. anthracis NrdI. The tyrosyl radical in NrdF is stabilized through its interaction with a ferromagnetically coupled manganese dimer. Moreover, we show through a combination of redox titration and protein electrochemistry that in contrast to hitherto characterized NrdIs, the B. anthracis NrdI is stable in its semiquinone form (NrdIsq) with a difference in electrochemical potential of ∼110 mV between the hydroquinone and semiquinone state. The under anaerobic conditions stable NrdIsq is fully capable of generating the oxidized, tyrosyl radical-containing form of Mn-NrdF when exposed to oxygen. This latter observation strongly supports that a superoxide radical is involved in the maturation mechanism, and contradicts the participation of a peroxide species. Additionally, EPR spectra on whole cells revealed that a significant fraction of NrdI resides in its semiquinone form in vivo, underscoring that NrdIsq is catalytically relevant.  相似文献   

4.
Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn(2)(III) site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe(2)(III) site (Fe-NrdF) formed spontaneously from Fe(2+) and O(2). In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.  相似文献   

5.
Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y) cofactor (1.2 Y2) and with the help of NrdI can assemble a MnIII2-Y cofactor (0.9 Y2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μm) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR.  相似文献   

6.
Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Y?), which can be generated by the reaction of O2 with a diferrous cluster on the β subunit to form active diferric-Y? cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimanganese(III)-Y? cofactor. The similar metal binding sites of the class Ia and Ib RNRs, their ability to bind both MnII and FeII, and the activity of the class Ib RNR with both diferric-Y? and dimanganese(III)-Y cofactors raise the intriguing question of how the cell prevents mismetallation of these essential enzymes. The presence of the class Ib RNR in numerous pathogenic bacteria also highlights the importance of manganese for these organisms' growth and virulence.  相似文献   

7.
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75?, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90?) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55?) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1?) and Mn,Fe(III)Fe(II) species (~3.3-3.4?) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.  相似文献   

8.

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.

  相似文献   

9.
Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259–6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (FeIII2-Y) in vitro, whereas assembly of a dimanganese-tyrosyl radical (MnIII2-Y) cofactor requires NrdI, and MnIII2-Y is more active than FeIII2-Y with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that MnIII2-Y-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets.  相似文献   

10.
11.
12.
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides, the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of deoxyribonucleotides during the cell cycle (29). Three main classes of RNRs are known. Class I RNRs are oxygen-dependent enzymes, class II RNRs are oxygen-independent enzymes, and class III RNRs are oxygen-sensitive enzymes. Class I RNRs are divided into two subclasses, subclasses Ia and Ib.Staphylococcus aureus is a Gram-positive facultative aerobe and a major human pathogen (24). S. aureus contains class Ib and class III RNRs, which are essential for aerobic and anaerobic growth, respectively (26). The class Ib NrdEF RNR is encoded by the nrdE and nrdF genes: NrdE contains the substrate binding and allosteric binding sites, and NrdF contains the catalytic site for ribonucleotide reduction. The S. aureus nrdEF genes form an operon containing a third gene, nrdI, the product of which, NrdI, is a flavodoxin (5, 33). Many other bacteria such as Escherichia coli (16), Lactobacillus lactis (17), and Mycobacterium and Corynebacterium spp. possess class Ib RNR operons that contain a fourth gene, nrdH (30, 44, 50), whose product, NrdH, is a thiol-disulfide redoxin (16, 17, 40, 43, 49). More-complex situations are found for some bacteria, where the class Ib RNR operon may be duplicated and one or more of the nrdI and nrdH genes may be missing or located in another part of the chromosome (29).NrdH proteins are glutaredoxin-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of their active-site dithiol proteins. NrdH proteins function with high specificity as electron donors for class I RNRs (9, 16-18). They are widespread in bacteria, particularly in those bacteria that lack glutathione (GSH), where they function as a hydrogen donor for the class Ib RNR (12, 16, 17). In E. coli, which possesses class Ia and class Ib RNRs, NrdH functions in vivo as the primary electron donor for the class Ib RNR, whereas thioredoxin or glutaredoxin is used by the class Ia NrdAB RNR (12, 17). NrdH redoxins contain a conserved CXXC motif, have a low redox potential, and can reduce insulin disulfides. NrdH proteins possess an amino acid sequence similar to that of glutaredoxins but behave functionally more like thioredoxins. NrdH proteins are reduced by thioredoxin reductase but not by GSH and lack those residues in glutaredoxin that bind GSH and the GSH binding cleft (39, 40). The structures of the E. coli and Corynebacterium ammoniagenes NrdH redoxins reveal the presence of a wide hydrophobic pocket at the surface, like that in thioredoxin, that is presumed to be involved in binding to thioredoxin reductase (39, 40). NrdI proteins are flavodoxin proteins that function as electron donors for class Ib RNRs and are involved in the maintenance of the NrdF diferric tyrosyl radical (5, 33). In Streptococcus pyogenes, NrdI is essential for the activity of the NrdHEF system in a heterologous E. coli in vivo complementation assay (33). Class Ib RNRs are proposed to depend on two specific electron donors, NrdH, which provides reducing power to the NrdE subunit, and NrdI, which supplies electrons to the NrdF subunit (33).In this report we identify an open reading frame (ORF) in S. aureus encoding an NrdH-like protein with partial sequence relatedness to the E. coli, Salmonella enterica serovar Typhimurium, L. lactis, and C. ammoniagenes NrdH proteins. In contrast to these bacteria, the S. aureus nrdH gene does not form part of the class Ib RNR operon. The S. aureus NrdH protein differs in its structure from the canonical NrdH in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that in vitro, S. aureus NrdH reduces protein disulfides and is an electron donor for the homologous class Ib NrdEF ribonucleotide reductase.  相似文献   

13.
The combination of site-directed mutagenesis, isotopic labeling, new magnetic resonance techniques and optical spectroscopic methods have provided new insights into cofactor coordination and into the mechanism of electron transport and proton-coupled electron transport in photosystem II. Site-directed mutations in the D1 polypeptide of this photosystem have implicated a number of histidine and carboxylate residues in the coordination and assembly of the manganese cluster, responsible for photosynthetic water oxidation. Many of these are located in the carboxy-terminal region of this polypeptide close to the processing site involved in its maturation. This maturation is a required precondition for cluster assembly. Recent proposals for the mechanism of water oxidation have directly implicated redox-active tyrosine Y(Z) in this mechanism and have emphasized the importance of the coupling of proton and electron transfer in the reduction of Y(Z)(radical) by the Mn cluster. The interaction of both homologous redox-active tyrosines Y(Z) and Y(D) with their respective homologous proton acceptors is discussed in an effort to better understand the significance of such coupling.  相似文献   

14.
Corynebacterium ammoniagenes contains a ribonucleotide reductase (RNR) of the class Ib type. The small subunit (R2F) of the enzyme has been proposed to contain a manganese center instead of the dinuclear iron center, which in other class I RNRs is adjacent to the essential tyrosyl radical. The nrdF gene of C. ammoniagenes, coding for the R2F component, was cloned in an inducible Escherichia coli expression vector and overproduced under three different conditions: in manganese-supplemented medium, in iron-supplemented medium, and in medium without addition of metal ions. A prominent typical tyrosyl radical EPR signal was observed in cells grown in rich medium. Iron-supplemented medium enhanced the amount of tyrosyl radical, whereas cells grown in manganese-supplemented medium had no such radical. In highly purified R2F protein, enzyme activity was found to correlate with tyrosyl radical content, which in turn correlated with iron content. Similar results were obtained for the R2F protein of Salmonella typhimurium class Ib RNR. The UV-visible spectrum of the C. ammoniagenes R2F radical has a sharp 408-nm band. Its EPR signal at g = 2.005 is identical to the signal of S. typhimurium R2F and has a doublet with a splitting of 0.9 millitesla (mT), with additional hyperfine splittings of 0.7 mT. According to X-band EPR at 77-95 K, the inactive manganese form of the C. ammoniagenes R2F has a coupled dinuclear Mn(II) center. Different attempts to chemically oxidize Mn-R2F showed no relation between oxidized manganese and tyrosyl radical formation. Collectively, these results demonstrate that enzymatically active C. ammoniagenes RNR is a generic class Ib enzyme, with a tyrosyl radical and a diferric metal cofactor.  相似文献   

15.
Soluble inorganic pyrophosphatases (PPases) comprise two evolutionarily unrelated families (I and II). These two families have different specificities for metal cofactors, which is thought to be because of the fact that family II PPases have three active site histidines, whereas family I PPases have none. Here, we report the structural and functional characterization of a unique family I PPase from Mycobacterium tuberculosis (mtPPase) that has two His residues (His21 and His86) in the active site. The 1.3-A three-dimensional structure of mtPPase shows that His86 directly interacts with bound sulfate, which mimics the product phosphate. Otherwise, mtPPase is structurally very similar to the well studied family I hexameric PPase from Escherichia coli, although mtPPase lacks the intersubunit metal binding site found in E. coli PPase. The cofactor specificity of mtPPase resembles that of E. coli PPase in that it has high activity in the presence of Mg2+, but it differs from the E. coli enzyme and family II PPases because it has much lower activity in the presence of Mn2+ or Zn2+. Replacements of His21 and His86 in mtPPase with the residues found in the corresponding positions of E. coli PPase had either no effect on the Mg2+- and Mn2+-supported reactions (H86K) or reduced Mg2+-supported activity (H21K). However, both replacements markedly increased the Zn2+-supported activity of mtPPase (up to 11-fold). In the double mutant, Zn2+ was a 2.5-fold better cofactor than Mg2+. These results show that the His residues in mtPPase are not essential for catalysis, although they determine cofactor specificity.  相似文献   

16.
A conventional class I (subclass a or b) ribonucleotide reductase (RNR) employs a tyrosyl radical (Y (*)) in its R2 subunit for reversible generation of a 3'-hydrogen-abstracting cysteine radical in its R1 subunit by proton-coupled electron transfer (PCET) through a network of aromatic amino acids spanning the two subunits. The class Ic RNR from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor (specifically, the Mn (IV) ion) in place of the Y (*) for radical initiation. Ct R2 is activated when its Mn (II)/Fe (II) form reacts with O 2 to generate a Mn (IV)/Fe (IV) intermediate, which decays by reduction of the Fe (IV) site to the active Mn (IV)/Fe (III) state. Here we show that the reduction step in this sequence is mediated by residue Y222. Substitution of Y222 with F retards the intrinsic decay of the Mn (IV)/Fe (IV) intermediate by approximately 10-fold and diminishes the ability of ascorbate to accelerate the decay by approximately 65-fold but has no detectable effect on the catalytic activity of the Mn (IV)/Fe (III)-R2 product. By contrast, substitution of Y338, the cognate of the subunit interfacial R2 residue in the R1 <--> R2 PCET pathway of the conventional class I RNRs [Y356 in Escherichia coli ( Ec) R2], has almost no effect on decay of the Mn (IV)/Fe (IV) intermediate but abolishes catalytic activity. Substitution of W51, the Ct R2 cognate of the cofactor-proximal R1 <--> R2 PCET pathway residue in the conventional class I RNRs (W48 in Ec R2), both retards reduction of the Mn (IV)/Fe (IV) intermediate and abolishes catalytic activity. These observations imply that Ct R2 has evolved branched pathways for electron relay to the cofactor during activation and catalysis. Other R2s predicted also to employ the Mn/Fe cofactor have Y or W (also competent for electron relay) aligning with Y222 of Ct R2. By contrast, many R2s known or expected to use the conventional Y (*)-based system have redox-inactive L or F residues at this position. Thus, the presence of branched activation- and catalysis-specific electron relay pathways may be functionally important uniquely in the Mn/Fe-dependent class Ic R2s.  相似文献   

17.
Jiang W  Xie J  Nørgaard H  Bollinger JM  Krebs C 《Biochemistry》2008,47(15):4477-4483
We recently showed that the class Ic ribonucleotide reductase (RNR) from the human pathogen Chlamydia trachomatis ( Ct) uses a Mn (IV)/Fe (III) cofactor in its R2 subunit to initiate catalysis [Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M., Maslak, M.-A., Krebs, C., and Bollinger, J. M., Jr. (2007) Science 316, 1188-1191]. The Mn (IV) site of the novel cofactor functionally replaces the tyrosyl radical used by conventional class I RNRs to initiate substrate radical production. As a first step in evaluating the hypothesis that the use of the alternative cofactor could make the RNR more robust to reactive oxygen and nitrogen species [RO(N)S] produced by the host's immune system [H?gbom, M., Stenmark, P., Voevodskaya, N., McClarty, G., Gr?slund, A., and Nordlund, P. (2004) Science 305, 245-248], we have examined the reactivities of three stable redox states of the Mn/Fe cluster (Mn (II)/Fe (II), Mn (III)/Fe (III), and Mn (IV)/Fe (III)) toward hydrogen peroxide. Not only is the activity of the Mn (IV)/Fe (III)-R2 intermediate stable to prolonged (>1 h) incubations with as much as 5 mM H 2O 2, but both the fully reduced (Mn (II)/Fe (II)) and one-electron-reduced (Mn (III)/Fe (III)) forms of the protein are also efficiently activated by H 2O 2. The Mn (III)/Fe (III)-R2 species reacts with a second-order rate constant of 8 +/- 1 M (-1) s (-1) to yield the Mn (IV)/Fe (IV)-R2 intermediate previously observed in the reaction of Mn (II)/Fe (II)-R2 with O 2 [Jiang, W., Hoffart, L. M., Krebs, C., and Bollinger, J. M., Jr. (2007) Biochemistry 46, 8709-8716]. As previously observed, the intermediate decays by reduction of the Fe site to the active Mn (IV)/Fe (III)-R2 complex. The reaction of the Mn (II)/Fe (II)-R2 species with H 2O 2 proceeds in three resolved steps: sequential oxidation to Mn (III)/Fe (III)-R2 ( k = 1.7 +/- 0.3 mM (-1) s (-1)) and Mn (IV)/Fe (IV)-R2, followed by decay of the intermediate to the active Mn (IV)/Fe (III)-R2 product. The efficient reaction of both reduced forms with H 2O 2 contrasts with previous observations on the conventional class I RNR from Escherichia coli, which is efficiently converted from the fully reduced (Fe 2 (II/II)) to the "met" (Fe 2 (III/III)) form [Gerez, C., and Fontecave, M. (1992) Biochemistry 31, 780-786] but is then only very inefficiently converted from the met to the active (Fe 2 (III/III)-Y (*)) form [Sahlin, M., Sj?berg, B.-M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990) Biochem. Biophys. Res. Commun. 167, 813-818].  相似文献   

18.
Chlamydia trachomatis ribonucleotide reductase (RNR) is a class Ic RNR. It has two homodimeric subunits: proteins R1 and R2. Class Ic protein R2 in its most active form has a manganese–iron metal cofactor, which functions in catalysis like the tyrosyl radical in classical class Ia and Ib RNRs. Oligopeptides with the same sequence as the C‐terminus of C. trachomatis protein R2 inhibit the catalytic activity of C. trachomatis RNR, showing that the class Ic enzyme shares a similar highly specific inhibition mechanism with the previously studied radical‐containing class Ia and Ib RNRs. The results indicate that the catalytic mechanism of this class of RNRs with a manganese–iron cofactor is similar to that of the tyrosyl‐radical‐containing RNRs, involving reversible long‐range radical transfer between proteins R1 and R2. The competitive binding of the inhibitory R2‐derived oligopeptide blocks the transfer pathway. We have constructed three‐dimensional structure models of C. trachomatis protein R1, based on homologous R1 crystal structures, and used them to discuss possible binding modes of the peptide to protein R1. Typical half maximal inhibitory concentration values for C. trachomatis RNR are about 200 µ m for a 20‐mer peptide, indicating a less efficient inhibition compared with those for an equally long peptide in the Escherichia coli class Ia RNR. A possible explanation is that the C. trachomatis R1/R2 complex has other important interactions, in addition to the binding mediated by the R1 interaction with the C‐terminus of protein R2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
20.
The direct interrogation of fleeting intermediates by rapid-mixing kinetic methods has significantly advanced our understanding of enzymes that utilize dioxygen. The gas's modest aqueous solubility (<2 mM at 1 atm) presents a technical challenge to this approach, because it limits the rate of formation and extent of accumulation of intermediates. This challenge can be overcome by use of the heme enzyme chlorite dismutase (Cld) for the rapid, in situ generation of O(2) at concentrations far exceeding 2 mM. This method was used to define the O(2) concentration dependence of the reaction of the class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis, in which the enzyme's Mn(IV)/Fe(III) cofactor forms from a Mn(II)/Fe(II) complex and O(2) via a Mn(IV)/Fe(IV) intermediate, at effective O(2) concentrations as high as ~10 mM. With a more soluble receptor, myoglobin, an O(2) adduct accumulated to a concentration of >6 mM in <15 ms. Finally, the C-H-bond-cleaving Fe(IV)-oxo complex, J, in taurine:α-ketoglutarate dioxygenase and superoxo-Fe(2)(III/III) complex, G, in myo-inositol oxygenase, and the tyrosyl-radical-generating Fe(2)(III/IV) intermediate, X, in Escherichia coli RNR, were all accumulated to yields more than twice those previously attained. This means of in situ O(2) evolution permits a >5 mM "pulse" of O(2) to be generated in <1 ms at the easily accessible Cld concentration of 50 μM. It should therefore significantly extend the range of kinetic and spectroscopic experiments that can routinely be undertaken in the study of these enzymes and could also facilitate resolution of mechanistic pathways in cases of either sluggish or thermodynamically unfavorable O(2) addition steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号