首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.  相似文献   

2.
3.
Experiments were conducted to determine the effects of feeder layers composed of different cell types on the efficiency of isolation and the behavior of porcine embryo-derived cell lines. Inner cell masses (ICM) isolated from 7- to 8-d-old embryos were plated on feeder layers composed of Buffalo rat liver cells (BRL), a continuous cell line of murine embryonic fibroblasts (STO), STO combined with BRL at a 9:1 and 1:1 ratio, STO with BRL-conditioned medium (STO + CM), porcine embryonic fibroblasts (PEF), PEF combined with BRL at a 9:1 and 1:1 ratio, porcine uterine epithelial cells (PUE), murine embryonic fibroblasts (MEF), or an epithelial-like porcine embryo-derived cell line (PH3A). It was found that embryo-derived cell lines could be isolated only from the STO and the STO with BRL-conditioned medium treatments. The isolated cell lines were of epithelial-like and embryonic stem cell-like (ES-like) morphology. The feeders tested had an effect on the behavior of plated ICM. Some feeders, represented by PUE, BRL, STO:BRL (1:1), PEF:BRL (1:1), and PH3A, did not promote attachment of the ICM to the feeder layer; others, represented by STO and MEF, allowed attachment, differentiation and proliferation. On PEF feeders the ICM spread onto the feeder layer after attachment without apparent signs of proliferation or differentiation. None of the feeders tested increased the efficiency of isolation or the growth characteristics of embryo-derived (both ES-like and epithelial-like) cell lines over that of STO feeders.  相似文献   

4.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

5.
Isolation of embryonic stem cells has been documented only in the mouse and perhaps the hamster and cow. We report results of experiments designed to determine the effect of age of porcine embryos (6 through 10 d after the first day of estrus) on isolation of cell lines with embryonic stem cell-like morphology. The capacity of fresh and short-term cultured inner cell mass (ICM) cells to differentiate into normal tissues after injection into blastocysts was also measured. Few Day-6 ICM survived in culture to the first passage onto fresh feeder cells, but cell lines with embryonic stem cell-like morphology developed from Day-7 through Day-10 ICM. Isolation of embryonic stem cell-like colonies was achieved at a higher frequency from ICM isolated from older embryos, but embryonic stem cell-like colonies from older embryos also tended to differentiate spontaneously in culture. Viable porcine chimeras were born after injection of fresh ICM into blastocysts that were transferred to recipients for development to term; no chimeras were born from blastocysts injected with ICM subjected to short-term (1 to 6 d) culture. Germ-cell chimerism was confirmed in one of the chimeras. These results document that undifferentiated cells can be removed from porcine blastocysts, transplanted to other embryos, and contribute to development of normal differentiated tissues, including germ cells. Cells with embryonic stem-like morphology can be isolated in culture from ICM at various embryonic ages, but ICM from young blastocysts (e.g., Day-7 embryos) yield embryonic stem cell-like colonies at lower frequency than do ICM from older blastocysts (e.g., Day-10 embryos).  相似文献   

6.
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.  相似文献   

7.
To increase our understanding of rat embryos in culture and to attempt the isolation of blastocyst-derived cell lines, we examinated the initial growth behaviour of rat blastocysts from four strains of rat on four different feeder cell layers. The feeders used were a continuous cell line of murine embryonic fibroblasts (STO), primary mouse (MEF) or primary rat (REF) embryonic fibroblasts, and a continuous cell line of rat uterine epithelial cells (RUCs). A medium that gave optimum plating efficiencies for murine ES cells was used in the rat embryo culture. Each culture system allowed hatching and attachment of the blastocysts, that is, the behaviour was similar on each feeder and each strain for the first 2 days in culture. Subsequently, there was a rapid differentiation of the Inner Cell Mass (ICM) cells on fibroblastic feeder cell layers (STO > MEF > REF), and this was generally complete after 3–6 days in primary culture. On RUCs, the ICM was found to increase in size without differentiation up to and including day 4 and in some cases longer. Embryo-derived cells were obtained by disaggregating and passaging ICMs on REF and RUC feeders. Rounded, refractile, and epithelial-like cells were isolated on REF and colonies of ES-like cells on the RUCs. The ES-like cells were positive for expression of alkaline phosphatase and stage-specific embryonic-antigen 1. This is an important first step towards the derivation and culture of pluripotent ES cells from the rat. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early, intermediate and late passages using a custom DNA microarray platform (NeuroStem 2.0 Chip). The microarray data was validated using RT-PCR and virtual SAGE analysis. Our comparative gene expression study identified a limited number of molecular targets potentially involved in the ability of human neonatal foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates.  相似文献   

9.
Isolation and culture of embryonic stem cells from porcine blastocysts   总被引:8,自引:0,他引:8  
This study was conducted to establish embryonic stem (ES) cell lines from porcine blastocysts. Blastocysts were collected from China miniature pigs at day 7-9 of pregnancy. Embryos were either directly (intact embryos) cultured on mitomysin C-inactivated murine embryonic fibroblasts (MEF) as feeder layers, or were used to isolate the inner cell masses (ICM) by enzyme digestive method and then cultured. It was found that enzyme digestive method could isolate ICMs without any damages of cells in all blastocysts (28). All ICMs attached to the feeder layers. Primary cell colonies were formed in 68% of ICM culture and 28% of intact blastocyst culture. Two ES cell lines derived from ICM passed six subcultures (passages). These cells morphologically resembled mouse ES cells and consistently expressed alkaline phosphatase activity. When the ES cells were cultured in a medium without feeder layer and leukemin inhibitory factor, they differentiated into several types of cells including neuron-like, smooth muscle-like, and epithelium-like cells. Some cells formed embryoid bodies in a suspension culture. These results indicate that porcine ES cell line can be established under the present experimental conditions and these ES cells are pluripotent.  相似文献   

10.
Feeder cells are commonly used to culture embryonic stem cells to maintain their undifferentiated and pluripotent status. Conventionally, mouse embryonic fibroblasts (MEFs), supplemented with leukemia inhibitory factor (LIF), are used as feeder cells to support the growth of mouse embryonic stem cells (mESCs) in culture. To prepare for fresh MEF feeder or for MEF-conditioned medium, sacrifice of mouse fetuses repeatedly is unavoidable in these tedious culture systems. Here we report the discovery of a human endothelial cell line (ECV-304 cell line) that efficiently supports growth of mESCs LIF-free conditions. mESCs that were successfully cultured for eight to 20 passages on ECV-304 feeders showed morphological characteristics similar to cells cultured in traditional feeder cell systems. These cells expressed the stem cell markers Oct3/4, Nanog, Sox2, and SSEA-1. Furthermore, cells cultured on the ECV-304 cell line were able to differentiate into three germ layers and were able to generate chimeric mice. Compared with traditional culture systems, there is no requirement for mouse fetuses and exogenous LIF does not need to be added to the culture system. As a stable cell line, the ECV-304 cell line efficiently replaces MEFs as an effective feeder system and allows the efficient expansion of mESCs.  相似文献   

11.
The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin-0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.  相似文献   

12.
Variable conditions were tested to determine an in-vitro cultivation method for the formation of morphologically undifferentiated embryonic stem cells from the inner cell mass (ICM) derived outgrowth of porcine blastocysts. Although all 16 Day-9 embryos failed to form colonies, 14 such colonies were obtained from a total of 69 Day-10 embryos when they were co-cultivated with porcine uterine fibroblast (PUF) cells over a 6-day period. The best results were obtained in Dulbecco's modified Eagle medium (DMEM) with 10% fetal calf serum and 10% porcine serum supplemented with bovine insulin and beta-mercaptoethanol, in which six out of seven embryos formed adequate ICM-derived colonies. Since murine fibroblasts were not found to be suitable feeder cells in this procedure, an endocrine synergistic interaction, which promotes embryonic attachment and colony formation, between porcine blastocysts and PUF cells is hypothesized. Continued propagation of the ICM-derived cells was not dependent on these factors; a total of seven cell lines were obtained after three to five subsequent passages on murine feeder-layers that resembled morphologically undifferentiated embryonic cells.  相似文献   

13.
14.
Functional roles of spermatogonial stem cells in spermatogenesis are self-renewing proliferation and production of differentiated daughter progeny. The ability to recapitulate these actions in vitro is important for investigating their biology and inducing genetic modification that could potentially lead to an alternative means of generating transgenic animals. The objective of this study was to evaluate the survival and proliferation of frozen-thawed bovine spermatogonial stem cells in vitro and investigate the effects of exogenous glial cell line-derived neurotrophic factor (GDNF). In order to accomplish this objective we developed a bovine embryonic fibroblast feeder cell line, termed BEF, to serve as feeder cells in a coculture system with bovine germ cells. Bovine spermatogonial stem cell survival and proliferation in vitro were evaluated by xenogeneic transplantation into the seminiferous tubules of immunodeficient mice. Bovine germ cells cocultured for 1 wk resulted in significantly more round cell donor colonies in recipient mouse testes compared to donor cells transplanted just after thawing. Bovine germ cells cocultured for 2 wk had fewer colony-forming cells than the freshly thawed cell suspensions or cells cultured for 1 wk. Characterization of the feeder cell line revealed endogenous expression of Gdnf mRNA and protein. Addition of exogenous GDNF to the culture medium decreased the number of stem cells present at 1 wk of coculture, but enhanced stem cell maintenance at 2 wk compared to cultures without added GDNF. These data indicate that frozen-thawed bovine spermatogonial stem cells survive cryopreservation and can be maintained during coculture with a feeder cell line in which the maintenance is influenced by GDNF.  相似文献   

15.
In embryonic stem (ES) cells, leukemia inhibitory factor (LIF)/STAT3, wnt and nodal/activin signaling are mainly active to control pluripotency during expansion. To maintain pluripotency, ES cells are typically cultured on feeder cells of varying origins. Murine ES cells are commonly cultured on murine embryonic fibroblasts (MEFs), which senesce early and must be frequently prepared. This process is laborious and leads to batch variation presenting a challenge for high-throughput ES cell expansion. Although some cell lines can be sustained by exogenous LIF, this method is costly. We present here a novel and inexpensive culture method for expanding murine ES cells on human foreskin fibroblast (HFF) feeders. After 20 passages on HFFs without LIF, ES cell lines showed normal expression levels of pluripotency markers, maintained a normal karyotype and retained the ability to contribute to the germline. As HFFs do not senesce for at least 62 passages, they present a vast supply of feeders.  相似文献   

16.
Murine embryonic stem (ES) cells can be maintained as stem cells in vitro only in the presence of feeder cells or a soluble factor produced by a number of cell lines. We have previously demonstrated that leukemia inhibitory factor (LIF) is the molecule which prevents ES cell differentiation in culture. In this report we demonstrate that recombinant LIF can substitute for feeder cells in maintaining the full developmental potential of ES cells. The totipotent D3 ES cell line, previously isolated and maintained on growth-arrested primary embryo fibroblasts, was transferred to media supplemented with 1000 U/ml (10 ng/ml) recombinant LIF. In the presence of LIF the ES cells were maintained for over 2 months as undifferentiated cells in the absence of any feeder cells. When injected into blastocysts the ES cells which had been maintained in LIF-supplemented media efficiently formed germ-line chimeras.  相似文献   

17.
We have developed and validated a microporous poly(ethylene terephthalate) membrane-based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, which allows real-time conditioning of the culture medium with human fibroblasts while maintaining the complete separation of the two cell types. The propagation and pluripotent characteristics of a human embryonic stem cell (hESC) line and a human induced pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder layer. Thus this co-culture system is a significant advance in hPSC culture methods, providing a facile stem cell expansion system with continuous medium conditioning while preventing mixing of hPSCs and feeder cells. This membrane culture method will enable testing of novel feeder cells and differentiation studies using co-culture with other cell types, and will simplify stepwise changes in culture conditions for staged differentiation protocols.  相似文献   

18.
Human-induced pluripotent stem (iPS) cells share the same key properties as embryonic stem cells, and may be generated from patient- or disease-specific sources, which makes them attractive for personalized medicine, drug screens, or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state is a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, as they express endogenous leukemia inhibitory factor (LIF) at high levels. Here, we examined the effect of exogenous microRNA-199a regulation on endogenous LIF expression in HuAECs, and in turn on human iPS cell pluripotency. We found that HuAECs feeder cells transfected with microRNA-199a mutant expressed LIF at high levels, allowing iPS to maintain a high level of alkaline phosphatase activity in long-term culture and form teratomas in severe combined immunodeficient mice. The expression of stem cell markers was increased in iPS cultured on HuAECs feeder cells transfected with the microRNA-199a mutant, compared with iPS cultured on HuAECs transfected with microRNA-199a or mouse embryo fibroblasts. Taken together, these results suggested that LIF expression might be regulated by microRNA-199a, and LIF was a crucial component in feeder cells, and also was required for maintenance of human iPS cells in an undifferentiated, proliferative state capable of self-renewal.  相似文献   

19.
以小鼠胚胎成纤维细胞(MEF)为饲养层, 研究了用Knockout血清替代品(Knockout serum replacement, KSR)代替胚胎干细胞(Embryonic stem cells, ES cell)培养液中的胎牛血清(FBS)和向含KSR的基础培养液中添加40%的小鼠ES细胞条件培养液(ES cell conditioned medium, ESCCM)对绵羊类ES细胞分离、克隆效率的影响。发现使用含FBS的基础培养液最多可以把绵羊类ES细胞传至3代, 而使用KSR和添加ESCCM能促进绵羊类ES细胞的分离和克隆, 所获得的类ES细胞分别可稳定传至第5和8代。同时对类ES细胞进行核型分析、AKP染色及体外分化能力检测, 证实所分离的类ES细胞符合ES细胞的主要特征。由此认为, 与FBS相比KSR更加适于绵羊类ES细胞的分离与培养; 而小鼠ES细胞在生长过程中可能分泌某些重要的细胞因子, 从而达到促进绵羊ES细胞增值的作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号