首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of stromal cells in the tumor microenvironment has been extensively characterized. We and others have shown that stromal cells may participate in several steps of the metastatic cascade. This protocol describes an isolated tumor perfusion model that enables studies of cancer and stromal cell shedding. It could also be used to study the effects of therapies interfering with the shedding of tumor cells or fragments, circulating (stem) cells or biomarkers. Primary tumors are grown in a microenvironment in which stromal cells express GFP ubiquitously. Tumors are implanted orthotopically or can be implanted ectopically. As a result, all tumor-associated stromal cells express GFP. This technique can be used to detect and study the role of stromal cells in tumor fragments within the circulation in mice. Studying the role of stromal cells in circulating tumor fragments using this model may take 2-10 weeks, depending on the growth rate of the primary tumor.  相似文献   

2.
Parabiosis-conjoined surgery to provide a shared circulation between two mice-has been previously developed to study the hematopoietic system. This protocol describes the use of parabiosis for efficient transplantation of skin from a transgenic to a wild-type mouse. It can be used to study the role of stromal cells in a spontaneous model of distant cancer dissemination (metastasis). We have recently shown that primary tumor-derived stromal cells may facilitate metastasis by providing a provisional stroma at the secondary site. Studying the role of primary tumor-derived stroma cells requires methods for distinguishing and targeting stromal cells originating from the primary tumor versus their counterparts in the metastatic site. Parabiosis may also be used, taking advantage of the shared circulation between the parabiosed mice, to study tumor metastasis from one parabiont to another, or to investigate the role of circulating inflammatory cells or stem cells. Studying the role of stromal cells in metastasis using this model typically takes up to 11 weeks.  相似文献   

3.
Breast cancer is the most common cancer in women, and this prevalence has a major impact on health worldwide. Localized breast cancer has an excellent prognosis, with a 5-year relative survival rate of 85%. However, the survival rate drops to only 23% for women with distant metastases. To date, the study of breast cancer metastasis has been hampered by a lack of reliable metastatic models. Here we describe a novel in vivo model using human breast cancer xenografts in NOD scid gamma (NSG) mice; in this model human breast cancer cells reliably metastasize to distant organs from primary tumors grown within the mammary fat pad. This model enables the study of the entire metastatic process from the proper anatomical site, providing an important new approach to examine the mechanisms underlying breast cancer metastasis. We used this model to identify gene expression changes that occur at metastatic sites relative to the primary mammary fat pad tumor. By comparing multiple metastatic sites and independent cell lines, we have identified several gene expression changes that may be important for tumor growth at distant sites.  相似文献   

4.
We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the “reverse Warburg effect,” because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TO MM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the “reverse Warburg effect,” our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TO MM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally “fuels” tumor progression and metastatic dissemination, by “feeding” mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TO MM20(-) “glycolytic” cancer cells were rarely observed, indicating that the conventional “Warburg effect” does not frequently occur in cancer-positive lymph node metastases.  相似文献   

5.
Breast cancer incidence and mortality increase with age. A better understanding of the biological behavior of metastatic and nonmetastatic breast tumors in older subjects may help to develop improved breast cancer therapies. In this study, we used syngeneic metastatic (4TO7cg) and nonmetastatic (64pT) mouse breast tumor models at three age levels to evaluate various characteristics that are considered to be important for effective anti-breast cancer immunotherapy. These included tumor size and growth, metastases, vascularization, gene expression levels of the tumor-associated antigen (TAA) Mage-b (homologous to human MAGE-B) in primary breast tumors and metastases, and the presence of CD4(+) and CD8(+) T cells in the inguinal lymph nodes at the site of the tumor. The primary breast tumors and metastases were generated by injection of mouse mammary tumor cell lines 4TO7cg or 64pT into a mammary fat pad of normal 3-, 9-, or 21/24-month old BALB/c mice. In the nonmetastatic breast tumor model, significantly smaller tumors were observed in old compared with young mice. This was associated with a significant increase in the percentage of CD8(+) T cells in inguinal lymph nodes and significantly higher Mage-b expression levels in the primary tumors at old age. In the metastatic (4TO7cg) breast tumor model, a less pronounced, not statistically significant, smaller tumor size was found in the old mice, without a difference in the percentage of CD8(+) T cells or Mage-b expression levels. However, in this mouse model almost all metastases showed high levels of Mage-b expression (2- to 3-fold higher than the primary tumors in the same animals) regardless of age. These results indicate that the metastatic and nonmetastatic breast tumor models could be useful model systems to analyze how breast cancer vaccines for humans can be tailored to old age.  相似文献   

6.
Breast cancer growth can be studied in mice using a plethora of models. Genetic manipulation of breast cancer cells may provide insights into the functions of proteins involved in oncogenic progression or help to discover new tumor suppressors. In addition, injecting cancer cells into mice with different genotypes might provide a better understanding of the importance of the stromal compartment. Many models may be useful to investigate certain aspects of disease progression but do not recapitulate the entire cancerous process. In contrast, breast cancer cells engraftment to the mammary fat pad of mice better recapitulates the location of the disease and presence of the proper stromal compartment and therefore better mimics human cancerous disease. In this article, we describe how to implant breast cancer cells into mice orthotopically and explain how to collect tissues to analyse the tumor milieu and metastasis to distant organs. Using this model, many aspects (growth, angiogenesis, and metastasis) of cancer can be investigated simply by providing a proper environment for tumor cells to grow.  相似文献   

7.
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.  相似文献   

8.

Background

Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a five-year survival rate of 6%. It is characterized by extremely aggressive tumor growth rate and high incidence of metastasis. One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. However, the contribution of metabolic interrelationships between tumor cells and cells of the surrounding microenvironment to the progression of cancer is not well understood. We evaluated differential expression of metabolic genes and, hence, metabolic pathways in primary tumor and metastases of patients with pancreatic adenocarcinoma.

Methods and Findings

We analyzed the metabolic gene (those involved in glycolysis, tri-carboxylic acid pathway, pentose-phosphate pathway and fatty acid metabolism) expression profiles of primary and metastatic lesions from pancreatic cancer patients by gene expression arrays. We observed two principal results: genes that were upregulated in primary and most of the metastatic lesions; and genes that were upregulated only in specific metastatic lesions in a site-specific manner. Immunohistochemical (IHC) analyses of several metabolic gene products confirmed the gene expression patterns at the protein level. The IHC analyses also revealed differential tumor and stromal expression patterns of metabolic enzymes that were correlated with the metastasis sites.

Conclusions

Here, we present the first comprehensive studies that establish differential metabolic status of tumor and stromal components and elevation of aerobic glycolysis gene expression in pancreatic cancer.  相似文献   

9.
Cancer cells exist in a mechanically and chemically heterogeneous microenvironment which undergoes dynamic changes throughout neoplastic progression. During metastasis, cells from a primary tumor acquire characteristics that enable them to escape from the primary tumor and migrate through the heterogeneous stromal environment to establish secondary tumors. Despite being linked to poor prognosis, there are no direct clinical tests available to diagnose the likelihood of metastasis. Moreover, the physical mechanisms employed by metastatic cancer cells to migrate are poorly understood. Because metastasis of most solid tumors requires cells to exert force to reorganize and navigate through dense stroma, we investigated differences in cellular force generation between metastatic and non-metastatic cells. Using traction force microscopy, we found that in human metastatic breast, prostate and lung cancer cell lines, traction stresses were significantly increased compared to non-metastatic counterparts. This trend was recapitulated in the isogenic MCF10AT series of breast cancer cells. Our data also indicate that increased matrix stiffness and collagen density promote increased traction forces, and that metastatic cells generate higher forces than non-metastatic cells across all matrix properties studied. Additionally, we found that cell spreading for these cell lines has a direct relationship with collagen density, but a biphasic relationship with substrate stiffness, indicating that cell area alone does not dictate the magnitude of traction stress generation. Together, these data suggest that cellular contractile force may play an important role in metastasis, and that the physical properties of the stromal environment may regulate cellular force generation. These findings are critical for understanding the physical mechanisms of metastasis and the role of the extracellular microenvironment in metastatic progression.  相似文献   

10.
In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05). The percentage lung metastatic volume at 5 weeks (p = 0.08) and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04) and increased angiogenesis (p<0.01). These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely.  相似文献   

11.
We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the “reverse Warburg effect,” because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TOMM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the “reverse Warburg effect,” our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TOMM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally “fuels” tumor progression and metastatic dissemination, by “feeding” mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TOMM20(-) “glycolytic” cancer cells were rarely observed, indicating that the conventional “Warburg effect” does not frequently occur in cancer-positive lymph node metastases.Key words: caveolin-1, oxidative stress, MCT4, metabolic coupling, tumor stroma, SLC16A3, monocarboxylic acid transporter, two-compartment tumor metabolism, metastasis, TOMM20, complex IV, OXPHOS, mitochondria, inflammation  相似文献   

12.
《Cytotherapy》2022,24(7):699-710
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.  相似文献   

13.
Fas, an important death receptor-mediated signaling pathway, has been shown to be down-regulated during human colon tumorigenesis; however, how alterations in Fas expression influence the metastatic process remains unresolved. In mouse models, loss of Fas function was found to be both necessary and sufficient for tumor progression. In this study, we investigated the link between functional Fas status and malignant phenotype using a matched pair of naturally occurring primary (Fas-sensitive) and metastatic (Fas-resistant) human colon carcinoma cell lines in both in vitro and in vivo (xenograft) settings. Metastatic sublines were produced in vitro from the primary tumor cell line by functional elimination of Fas-responsive cells. Conversely, sublines derived from the primary tumor in vivo at distal metastatic sites were Fas-resistant. In contrast, simply disrupting the Fas pathway by molecular-based strategies in the Fas-sensitive primary tumor failed to achieve the same metastatic outcome. Interestingly, both in vitro- and in vivo-produced sublines resembled the naturally occurring metastatic population, based on functional and morphologic studies and genome-scale gene expression profiling. Overall, using this human colon carcinoma model, we: 1) showed that loss of Fas function was linked to, but alone was insufficient for, acquisition of a detectable metastatic phenotype; 2) demonstrated that metastatic subpopulations pre-existed within the heterogeneous primary tumor, and that anti-Fas interactions served as a selective pressure for their outgrowth; and 3) identified a large set of differentially expressed genes distinguishing the primary from metastatic malignant phenotypes. Thus, Fas-based interactions may represent a novel mechanism for the biologic or immunologic selection of certain types of Fas-resistant neoplastic clones with enhanced metastatic ability.  相似文献   

14.
Growth and survival of tumors at a site of metastasis involve interactions with stromal cells in the surrounding environment. Stromal cells aid tumor cell growth by producing cytokines as well as by modifying the environment surrounding the tumor through modulation of the extracellular matrix (ECM). Small leucine-rich proteoglycans (SLRPs) are biologically active components of the ECM which can be altered in the stroma surrounding tumors. The influence tumor cells have on stromal cells has been well elucidated. However, little is understood about the effect metastatic cancer cells have on the cell biology and behavior of the local stromal cells. Our data reveal a significant down-regulation in the expression of ECM components such as collagens I, II, III, and IV, and the SLRPs, decorin, biglycan, lumican, and fibromodulin in stromal cells when grown in the presence of two metastatic prostate cancer cell lines PC3 and DU145. Interestingly, TGF-β down-regulation was observed in stromal cells, as well as actin depolymerization and increased vimentin and α5β1 integrin expression. MT1-MMP expression was upregulated and localized in stromal cell protrusions which extended into the ECM. Moreover, enhanced stromal cell migration was observed after cross-talk with metastatic prostate tumor cells. Xenografting metastatic prostate cancer cells together with “activated” stromal cells led to increased tumorigenicity of the prostate cancer cells. Our findings suggest that metastatic prostate cancer cells create a metastatic niche by altering the phenotype of local stromal cells, leading to changes in the ECM.  相似文献   

15.
In this article we report about the role that tumor structure and extracellular matrix (ECM) may play in immunotherapy and in gene therapy using adenoviruses. We performed studies in a rat model for colorectal cancer, CC531, and in specimens of human colorectal cancer. The tumors were composed of two compartments, tumor cell nests surrounded by stromal cells. ECM proteins were expressed in the stromal part, where the blood vessels were also located. Furthermore, in several tumors, the tumor cell nests were surrounded by basal membrane-like structures. Therefore, in vascular approaches to treat cancer, therapeutic agents on their route to tumor cells may be hampered by ECM to reach tumor cells. We found that immune cells were abundantly present in tumors from colorectal origin. These cells were, however, not found in direct contact with tumor cells, but mainly in the stromal part of the tumor. Adenoviruses, when intravascularly injected, did not reach tumor cells in the CC531 rat model. Tumor cells were only infected, and even then in limited numbers, in cases of intratumoral injection. We hypothesize that ECM in a tumor is a barrier both for immune cells and for adenoviruses to make direct contact with these tumor cells, and thus limits colorectal tumor therapy.  相似文献   

16.
We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the “Reverse Warburg Effect”. In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the “Reverse Warburg Effect” or “Stromal-Epithelial Metabolic Coupling” in human breast cancers.  相似文献   

17.
Metastatic progression is thought to result from genetically advanced ?fully-malignant“ tumor cells. Within the concept the prevailing view holds that such cells disseminate mostly from large tumors and are capable of growing into metastases once they arrive at a distant site. Support for this scenario comes from numerous mouse models in which transplanted tumor cells grow into metastases within days or weeks. However, the assumption of such fully-malignant disseminating cells in human cancer is misleading and is neither supported by mathematical modeling of survival data from cancer patients nor by ex-vivo genomic data from disseminated cancer cells. For example, in breast cancer the growth of metastases is highly homogeneous and takes on average six years, the number of disseminated tumor cells before diagnosis of metastasis is similar for different tumor stages, and the genomic aberrations of disseminated cancer cells do rarely correspond to those in the primary tumor. Since these facts question conventional concepts of metastatic progression we provide a model of cancer progression in which time considerations and direct ex-vivo data form a starting point. In the proposed model tumor dormancy is a characteristic of almost all migrated tumor cells and metastatic growth is a rare, stochastic, evolutionary process of selection and mutation of cells that often disseminate shortly after transformation at the primary site.  相似文献   

18.
Breast cancers can recur after removal of the primary tumor and treatment to eliminate remaining tumor cells. Recurrence may occur after long periods of time during which there are no clinical symptoms. Tumor cell dormancy may explain these prolonged periods of asymptomatic residual disease and treatment resistance. We generated a dormancy gene signature from published experimental models and applied it to both breast cancer cell line expression data as well as four published clinical studies of primary breast cancers. We found that estrogen receptor (ER) positive breast cell lines and primary tumors have significantly higher dormancy signature scores (P<0.0000001) than ER- cell lines and tumors. In addition, a stratified analysis combining all ER+ tumors in four studies indicated 2.1 times higher hazard of recurrence among patients whose tumors had low dormancy scores (LDS) compared to those whose tumors had high dormancy scores (HDS) (p<0.000005). The trend was shown in all four individual studies. Suppression of two dormancy genes, BHLHE41 and NR2F1, resulted in increased in vivo growth of ER positive MCF7 cells. The patient data analysis suggests that disseminated ER positive tumor cells carrying a dormancy signature are more likely to undergo prolonged dormancy before resuming metastatic growth. Furthermore, genes identified with this approach might provide insight into the mechanisms of dormancy onset and maintenance as well as dormancy models using human breast cancer cell lines.  相似文献   

19.
BACKGROUND: Circulating tumor cells (CTCs) in the peripheral blood of breast cancer patients may be an important indicator of metastatic disease and poor prognosis. However, the use of experimental models is required to fully elucidate the functional consequences of CTCs. The purpose of this study was to optimize the sensitivity of multiparameter flow cytometry for detection of human tumor cells in mouse models of breast cancer. METHODS: MDA-MB-468 human breast cancer cells were serially diluted in whole mouse blood. Samples were lysed and incubated with a fluorescein isothiocyanate-conjugated anti-human leukocytic antigen antibody and a phycoerythrin-conjugated anti-mouse pan-leukocyte CD45 antibody. Samples were then immunomagnetically depleted of CD45-positive leukocytes, fixed, permeabilized, and stained with propidium iodide before flow cytometric analysis. RESULTS: Human breast cancer cells could be differentiated from mouse leukocytes based on increased light scatter, cell surface marker expression, and aneuploid DNA content. The method was found to have a lower sensitivity limit of 10(-5) and was effective for detecting human breast cancer cells in vivo in the circulation of experimental mice carrying primary human mammary tumors. CONCLUSIONS: This technique has the potential to be a valuable and sensitive tool for investigating the biological relevance of CTCs in experimental mouse models of breast cancer.  相似文献   

20.
We investigated alpha1-antichymotrypsin (ACT) gene expression in xenograft tumors generated by two isogenic human breast cancer cell lines derived from the same parent, MDA-MB-435, which display opposite metastatic behaviors. Microarray and real-time PCR experiments showed an overexpression of this serine protease inhibitor in the metastatic tumors (M-4A4T) and its derived metastases (M4-Mets) compared with the weakly metastatic tumors (NM-2C5T), and its release into the blood was confirmed by western-blotting. However, functional assays in vivo using genetically engineered tumor cells demonstrated that ACT up-regulation was not, by itself, responsible for the metastatic phenotype. We also made observations that ACT gene regulation was sensitive to tumor-host interactions: inoculation of these lines into the mouse mammary gland greatly increased ACT production and accentuated the intrinsic difference observed when they are cultured in vitro. Sensitivity of tumor cells to their environment was further analyzed by in vitro experiments, which demonstrated that a purified ECM environment and soluble components from normal host mammary cells were both able to significantly promote ACT expression. In addition, we took advantage of the xenogeneic nature of the model to measure ACT expression by the host cells (mouse) and the tumor cells (human) within the neoplasm using species-specific primers in real-time PCR experiments. It was found that the presence of tumor cells, irrespective of their metastatic capabilities, induced local ACT production by host cells at the primary and secondary tumor sites. Thus, this work indicates that there is a specific association of ACT overexpression with the metastatic phenotype in our breast cancer metastasis model. Moreover, because of the xenogeneic nature of our system, we were able to provide evidence of tumor-host reciprocal regulation of ACT production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号