首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium in biology: facts and medical perspectives   总被引:10,自引:0,他引:10  
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.  相似文献   

2.
Schweizer U  Schomburg L 《IUBMB life》2005,57(11):737-744
Selenium (Se) is an essential trace element in mammals. Dietary Se restriction or conditions of Se malabsorption lead to deficiency syndromes or exacerbate established diseases in humans and in many animal models. It is assumed that most, if not all, physiological actions of Se are mediated by selenocysteine (Sec) containing proteins. However, the exact role of particular selenoproteins for certain molecular pathways, for the metabolism of nutrients, hormones or cellular components and for the development and adaptive responses of the organism have often remained elusive. Through the use of transgenic animals, it becomes increasingly feasible to interfere specifically with the expression of single selenoproteins in certain tissues or at certain times. While some transgenic animals exhibit phenotypes that were expected from biochemical studies, in other instances the observed effects were a surprise in view of earlier hypotheses.  相似文献   

3.
Abstract

Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.  相似文献   

4.
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.  相似文献   

5.
Selenium is essential to human life and occurs in selenoproteins as selenocysteine (Sec), the 21st amino acid. The selenium atom endows selenocysteine with unique biochemical properties, including a low pK(a) and a high reactivity with many electrophilic agents. Here we describe the introduction of selenocysteine into recombinant non-selenoproteins produced in Escherichia coli, as part of a small tetrapeptide motif at the C terminus. This selenocysteine-containing motif could subsequently be used as a protein tag for purification of the recombinant protein, selenolate-targeted labeling with fluorescent compounds or radiolabeling with either gamma-emitting (75)Se or short-lived positron emitters such as (11)C. The results presented here thus show how a wide range of biotechnological applications can be developed starting from the insertion of selenocysteine into proteins.  相似文献   

6.
Selenium metabolism and bioavailability   总被引:13,自引:0,他引:13  
Selenium (Se) is at once an essential and toxic nutrient that occurs in both inorganic and organic forms. The biological functions of Se are mediated through at least 13 selenoproteins that contain Se as selenocysteine (Se-cyst). The endogenous synthesis of this amino acid from inorganic Se (selenide Se−2) and serine is encoded by a stop codon UGA in mRNA and involves a unique tRNA. Selenium can also substitute for sulfur in methionine to form an analog, selenomethionine (Se-meth), which is the main form of Se found in food. Animals cannot synthesize Se-meth or distinguish it from methionine and as a result it is nonspecifically incorporated into a wide range of Se-containing proteins. The metabolic fate of Se varies according to the form ingested and the overall Se status of an individual. This paper reviews the bioavailability, including absorption, transport, metabolism, storage, and excretion, of the different forms of exogenous and endogenous Se.  相似文献   

7.
Selenoproteins and selenium status in bone physiology and pathology   总被引:1,自引:0,他引:1  

Background

Emerging evidence supports the view that selenoproteins are essential for maintaining bone health.

Scope of review

The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized.

Major conclusions

Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women.

General significance

A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.  相似文献   

8.
9.
哺乳动物硒蛋白的研究进展   总被引:16,自引:0,他引:16  
硒是哺乳动物和人必需的微是元素。硒的生物学功能主要是以硒蛋白的形式表现的。到目前为止,已经克隆并测定cDNA顺序的哺乳动物硒蛋白有9种停,它们是细胞内谷胱甘肽过氧化物酶、细胞外谷胱甘肽过氧化物酶、磷脂氢谷胱甘肽过氧化物酶、胃肠谷胱甘肽过氧化物酶、I型碘化甲状腺原氨酸5′脱碘酶、Ⅱ型碘化甲状腺原氨酸5′脱磺酶、Ⅲ型碘化甲状腺原氨酸5′脱碘酶、硒蛋白P和硒蛋白W。这些硒蛋白中硒参入到蛋白分子是通过硒半  相似文献   

10.
硒酶及硒化合物生理功能研究的新进展   总被引:17,自引:0,他引:17  
硒是动物必需的微量元素,硒半胱氨酸是硒蛋白的组份并构成硒酶的活性中心,硒蛋白特别是硒酶是硒的主要功能形式,研究发现,硒半胱氨酸是参入到蛋白质分子中的第21种氨基酸,硒是唯一受基因调控的微量元素,最新研究表明,硒及其化合物还具有阻断某些炎症介质的生理活性,抑制蛋白激酶C,激活促分裂原活化蛋白激酶和S6核糖体蛋白激酶,免疫调节及与其它元素和维生素相互作用等多种生理功能,提示硒在人类健康中的作用及其机制比我们过去所预计的更为复杂。  相似文献   

11.

Background

Selenium (Se) is an essential micronutrient required by avian species. Dietary Se/vitamin E deficiency induces three classical diseases in chicks: exudative diathesis, nutritional pancreatic atrophy, and nutritional muscular dystrophy.

Scope of review

This review is to summarize and analyze the evolution, regulation, and function of avian selenogenome and selenoproteome and their relationship with the three classical Se/vitamin E deficiency diseases.

Major conclusions

There are 24 selenoproteins confirmed in chicks, with two avian-specific members (SELENOU and SELENOP2) and two missing mammalian members (GPX6 and SELENOV). There are two forms of SELENOP containing 1 or 13 selenocysteine residues. In addition, a Gallus gallus gene was conjectured to be the counterpart of the human SEPHS2. Expression of selenoprotein genes in the liver, pancreas, and muscle of chicks seemed to be highly responsive to dietary Se changes. Pathogeneses of the Se/vitamin E deficient diseases in the chicks were likely produced by missing functions of selected selenoproteins in regulating cellular and tissue redox balance and inhibiting oxidative/reductive stress-induced cell death.

General significance

Gene knockout models, similar to those of rodents, will help characterize the precise functions of avian selenoproteins and their comparisons with those of mammalian species.  相似文献   

12.
谷胱甘肽过氧化物酶的硒代半胱氨酸插入元件   总被引:5,自引:0,他引:5  
真核生物将硒代半胱氨酸插入蛋白质必需硒代半胱氨酸插入元件(SECIS)的参与,后者位于硒蛋白mRNA的3′非翻译区.采用RNA折叠程序对15个谷胱甘肽过氧化物酶基因进行计算机处理发现,其可能的SECIS中都具有3段保守碱基AUGA-A(G)AA-GA.根据A(G)AA位于顶环或者顶环上游5′臂的突环上,可将SECIS分为Ⅰ型和Ⅱ型结构  相似文献   

13.
Selenocysteine lyase activity was detected in crude extracts from a cysteine-requiring mutant ofEscherichia coli K-12. The level of activity was the same whether cells had been grown aerobically or anaerobically, with or without selenocysteine. Selenocysteine lyase catalyzes the conversion of selenocysteine to alanine and elemental Se, a reaction that is followed by a nonenzymatic reduction of the Se to hydrogen selenide. Both of these end products were identified in this study. With cysteine as the substrate, alanine and H2S were formed, but only at levels 50% less than the products formed from selenocysteine. Selenocysteine lyase has been identified in a number of mammals and bacteria; its presence in a cysK mutant ofE. coli K-12 suggests a common route whereby hydrogen selenide, derived from selenocysteine, can then be assimilated into selenoproteins.  相似文献   

14.
15.
Selenocysteine is a rare amino acid in protein that is encoded by UGA with the requirement of a downstream mRNA stem-loop structure, the selenocysteine insertion sequence element. To detect selenoproteins in Drosophila, the entire genome was analyzed with a novel program that searches for selenocysteine insertion sequence elements, followed by selenoprotein gene signature analyses. This computational screen and subsequent metabolic labeling with (75)Se and characterization of selenoprotein mRNA expression resulted in identification of three selenoproteins: selenophosphate synthetase 2 and novel G-rich and BthD selenoproteins that had no homology to known proteins. To assess a biological role for these proteins, a simple chemically defined medium that supports growth of adult Drosophila and requires selenium supplementation for optimal survival was devised. Flies survived on this medium supplemented with 10(-8) to 10(-6) m selenium or on the commonly used yeast-based complete medium at about twice the rate as those on a medium without selenium or with >10(-6) m selenium. This effect correlated with changes in selenoprotein mRNA expression. The number of eggs laid by Drosophila was reduced approximately in half in the chemically defined medium compared with the same medium supplemented with selenium. The data provide evidence that dietary selenium deficiency shortens, while supplementation of the diet with selenium normalizes the Drosophila life span by a process that may involve the newly identified selenoproteins.  相似文献   

16.
17.
Thioredoxin reductases (TRR) serve critical roles in maintaining cellular redox states. Two isoforms of TRR have been identified in mammals: both contain a penultimate selenocysteine residue that is essential for catalytic activity. A search of the genome of the invertebrate, Caenorhabditis elegans, reveals a gene highly homologous to mammalian TRR, with a TGA selenocysteine codon at the corresponding position. A selenocysteyl-tRNA was identified in this organism several years ago, but no selenoproteins have been identified experimentally. Herein we report the first identification of a C. elegans selenoprotein. By (75)Se labeling of C. elegans, one major band was identified, which migrated with the predicted mobility of the C. elegans TRR homologue. Western analysis with an antibody against human TRR provides strong evidence for identification of the C. elegans selenoprotein as a member of the TRR family. The 3'-untranslated region of this gene contains a selenocysteine insertion sequence (SECIS) element that deviates at one position from the previously invariant consensus "AUGA." Nonetheless, this element functions to direct selenocysteine incorporation in mammalian cells, suggesting conservation of the factors recognizing SECIS elements from worm to man.  相似文献   

18.
Although dietary selenium (Se) deficiency results in phenotypes associated with selenoprotein depletion in various organs, the brain is protected from Se loss. To address the basis for the critical role of Se in brain function, we carried out comparative gene expression analyses for the complete selenoproteome and associated biosynthetic factors. Using the Allen Brain Atlas, we evaluated 159 regions of adult mouse brain and provided experimental analyses of selected selenoproteins. All 24 selenoprotein mRNAs were expressed in the mouse brain. Most strikingly, neurons in olfactory bulb, hippocampus, cerebral cortex, and cerebellar cortex were exceptionally rich in selenoprotein gene expression, in particular in GPx4, SelK, SelM, SelW, and Sep15. Over half of the selenoprotein genes were also expressed in the choroid plexus. A unique expression pattern was observed for one of the highly expressed selenoprotein genes, SelP, which we suggest to provide neurons with Se. Cluster analysis of the expression data linked certain selenoproteins and selenocysteine machinery genes and suggested functional linkages among selenoproteins, such as that between SelM and Sep15. Overall, this study suggests that the main functions of selenium in mammals are confined to certain neurons in the brain.  相似文献   

19.
Selenium and selenoproteins in the rat kidney   总被引:1,自引:0,他引:1  
Kidney tissue contains a high concentration of selenium that is not accounted for by the known selenoprotein glutathione peroxidase (glutathione: hydrogen-peroxide oxidoreductase, EC 1.11.1.9). In order to investigate the nonglutathione peroxidase selenium, rats were isotopically labeled with [75Se]selenite over a 10-day period. After this time half of the 75Se in kidney homogenate was found in the particulate subcellular fractions. The kidney lysosomes contained unusually high levels of 75Se, yet they did not contain correspondingly high levels of glutathione peroxidase activity. Two selenoproteins having molecular weights less than 40 000 were resolved by gel filtration from a kidney supernatant fraction. A third selenoprotein exhibited a molecular weight of 75 000. This protein contained one 75 000 molecular-weight subunit, and its selenium was in the amino acid selenocysteine. The 75 000 molecular-weight protein was chromatographically distinct from glutathione peroxidase. In order to determine if these selenoproteins protect against cadmium toxicity, 109CdCl2 was administered to rats that were isotopically prelabeled with 75Se. At 3, 25 and 72 h after 109Cd administration, no 109Cd was associated with selenium-containing proteins. Two of the nonglutathione peroxidase selenoproteins were apparently unique to the kidney.  相似文献   

20.
Selenium is an essential nutrient for many organisms, as part of certain selenoproteins. However, selenium is toxic at high levels, which is thought to be due to non-specific replacement of cysteine by selenocysteine leading to disruption of protein function. In an attempt to prevent non-specific incorporation of selenocysteine into proteins and to possibly enhance plant selenium tolerance and accumulation, a mouse selenocysteine lyase was expressed in Brassica juncea (Indian mustard) chloroplasts, the site of selenocysteine synthesis. This selenocysteine lyase specifically breaks down selenocysteine into elemental selenium and alanine. The transgenic cpSL plants showed normal growth under standard conditions. Selenocysteine lyase activity in the cpSL transgenics was up to 6-fold higher than in wild-type plants. The cpSL transgenics contained up to 40% less selenium in protein compared to wild-type plants, indicating that Se flow in the plant was successfully redirected. Surprisingly, the selenium tolerance of the transgenic cpSL plants was reduced, perhaps due to interference of produced elemental selenium with chloroplastic sulphur metabolism. Shoot selenium levels were enhanced up to 50% in the cpSL transgenics, but only during the seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号