首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formulation of shelf-stable intermediate-moisture products is a critical food safety issue. Therefore, knowing the precise boundary for the growth-no-growth interface of Staphylococcus aureus is necessary for food safety risk assessment. This study was designed to examine the effects of various humectants and to produce growth boundary models as tools for risk assessment. The molecular mobility and the effects of various physical properties of humectants, such as their glass transition temperatures, their membrane permeability, and their ionic and nonionic properties, on S. aureus growth were investigated. The effects of relative humidity (RH; 84 to 95%, adjusted by sucrose plus fructose, glycerol, or NaCl), initial pH (4.5 to 7.0, adjusted by HCl), and potassium sorbate concentration (0 or 1,000 ppm) on the growth of S. aureus were determined. Growth was monitored by turbidity over a 24-week period. Toxin production was determined by enterotoxin assay. The 1,792 data points generated were analyzed by LIFEREG procedures (SAS Institute, Inc., Cary, N.C.), which showed that all parameters studied significantly affected the growth responses of S. aureus. Differences were observed in the growth-no-growth boundary when different humectants were used to achieve the desired RH values in both the absence and the presence of potassium sorbate. Sucrose plus fructose was most inhibitory at neutral pH values, while NaCl was most inhibitory at low pH values. The addition of potassium sorbate greatly increased the no-growth regions, particularly when pH was <6.0. Published kinetic growth and survival models were compared with boundary models developed in this work. The effects of solutes and differences in modeling approaches are discussed.  相似文献   

2.
In this study, the hurdle technology approach was used to prevent fungal growth of common spoilage fungi in naturally fermented black olives (Alternaria alternata, Aspergillus niger, Fusarium semitectum andPenicillium roqueforti). The factors studied included a combination of different concentrations of potassium sorbate (100 up to 1000 mg/L), a range of pH values (4.5, 5, 5.5, 6, and 6.5) and levels of NaCl (0, 3.5, 5, 7.5, and 10%).Alternaria alternata was the most sensitive fungus whereasP. roqueforti was the most resistant fungi against all hurdle factors. The combination of all hurdles completely inhibitedA. alternata andF. semitectum by lowest inhibitory factors, such as 100 mg/L potassium sorbate with 3.5% NaCl at pH 5. On the other hand, at pH 5, A.niger andP. roqueforti were totally prevented by a combination of 300 mg/L potassium sorbate with 10% NaCl and 400 mg/L potassium sorbate with 7.5% NaCl, respectively. Potassium sorbate and 5–10% NaCl interaction had significant stimulation effect onp. roqueforti andA. niger (p<0.05). This study indicates that potassium sorbate is a suitable preserving agent to inhibit growth of fungi in fermented products of pH near 4.5 regardless levels of NaCl. For products of slightly higher pH, the addition of potassium sorbate is suggested in combination with NaCl.  相似文献   

3.
A response surface model was developed for predicting the growth rates of Staphylococcus aureus in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10, 20, 30, and 40 degrees C. In all experimental variables, the primary growth curves were well (r2=0.9000 to 0.9975) fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. aureus were generally decreased by basic (pH 9-10) or acidic (pH 5-6) conditions and higher NaCl concentrations. The response surface model was identified as an appropriate secondary model for growth rates on the basis of correlation coefficient (r=0.9703), determination coefficient (r2=0.9415), mean square error (MSE=0.0185), bias factor (B(f)=1.0216), and accuracy factor (A(f)=1.2583). Therefore, the developed secondary model proved reliable for predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. aureus in TSB medium.  相似文献   

4.
We investigated the growth parameters of Saccharomyces rouxii isolated from spoiled chocolate syrup. The optimum pH range for S. rouxii was 3.5 to 5.5, whereas the minimum and maximum pH values that permitted growth were 1.5 and 10.5, respectively. For cells grown in 0 and 60% sucrose the optimum water activity (aw) values were 0.97 and 0.96, respectively. The optimum temperature for S. rouxii increased with a decreasing aw regardless of whether glucose or sucrose was used as the humectant. The optimum temperatures for S. rouxii were 28 degrees C at an aw of greater than 0.995 and 35 degrees C at an aw of 0.96 to 0.90 in 2 X potato dextrose broth with sucrose. Increasing the sorbate concentration (from 0.03 to 0.10%) caused the growth of S. rouxii to become more inhibited between aws of greater than 0.995 and 0.82. S. rouxii did not grow when the sorbate level was 0.12% (wt/vol). At lower sorbate levels, the effect of sorbate on the growth of S. rouxii depended on the aw level. Lowering the aw enhanced the resistance of S. rouxii to increasing concentrations of potassium sorbate. Permeability and polyol production are discussed with respect to sorbate tolerance of S. rouxii at different aw levels.  相似文献   

5.
The development of microbial populations on fillets of Mediterranean gilt-head sea bream ( Sparus aurata ) treated with potassium sorbate, sodium gluconate or a combination of both and stored under a modified atmosphere (MA) of 40% CO2, 30% O2 and 30% N2 at 0±1 °C for about 30 d was studied. The pH of aqueous solutions of the preservatives was adjusted to 6·0 with HCl. The preservatives were applied by dipping. The use of sorbate plus gluconate was more effective than sorbate alone. Gluconate had a positive effect on the growth of Gram-positive micro-organisms. Changes in the concentrations of glucose, glucose-6-phosphate, ammonia, acetic acid, trimethylamine-nitrogen and sorbate were also monitored.  相似文献   

6.
Skinless precooked, uncured sausage links with and without potassium sorbate (0.1% wt/wt) were inoculated with salmonellae, Staphylococcus aureus, Clostridium perfringens, and Clostridium botulinum and held at 27 C to represent temperature abuse of the product. Total counts of uninoculated product showed that the normal spoilage flora was delayed 1 day when sorbate was present. Growth of salmonellae was markedly retarded by sorbate. Growth of S. aureus was delayed 1 day in the presence of sorbate, after which growth occurred to the same level as in product without sorbate. C. perfringens declined to below detectable levels within the first day in product with and without sorbate. Sorbate retarded the growth of C. botulinum. Botulinal toxin was detected in 4 days in product without sorbate but not until after 10 days in product with sorbate.  相似文献   

7.
Cells of Escherichia coli, Pseudomonas fluorescens, and Staphylococcus aureus, previously grown in Trypticase Soy Broth (TSB) at a high level of available moisture (a(w) 0.994) and at low levels produced by addition of NaCl or glucose, were heated in neutral phosphate buffer, and in this buffer adjusted to low levels of available moisture by means of NaCl or glucose. Glucose in the heating medium was more protective than NaCl for E. coli and P. fluorescens, but hastened the thermal destruction of S. aureus. Added protection was given P. fluorescens during heating in glucose-buffer solution at a(w) 0.97 by previous growth in TSB adjusted to that a(w) value with glucose. Added protection was given E. coli during heating in NaCl-buffer solution at a(w) 0.98 by previous growth in TSB adjusted to that value with NaCl. With S. aureus, however, previous growth in TSB plus NaCl or glucose had little effect on heat resistance, but the solute in the heating medium had great influence, in that NaCl was very protective and glucose destructive. Opportunity may have been given during tempering of the cell suspension at 30 C in the heating medium prior to heating for the NaCl and glucose to diffuse into the staphylococcal cells.  相似文献   

8.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to aw 0.93 were more rapid than in unsupplemented media (aw 0.99). Although growth in unsupplemented medium was lower at 35 degrees C, incubation at 21 degrees C or 35 degrees C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 micrograms potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35 degrees C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35 degrees C than in cultures incubated at 21 degrees C in media both with and without 300 micrograms potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at -18 degrees C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 micrograms potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21 degrees C. Sensitivity to freezing increased when cultures were incubated at 21 degrees C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

9.
AIM: To evaluate the antibacterial susceptibilities of food-borne bacteria to individual and binary mixtures of a synthetic antimicrobial agent with a natural phenolic compound. METHODS AND RESULTS: Antibacterial susceptibilities of Escherichia coli, Listeria innocua, Salmonella Typhimurium and Staphylococcus aureus to individual and binary mixtures of potassium sorbate with a phenolic compound (thymol, carvacrol, or eugenol) were evaluated, at selected water activity (a(w); 0.99 or 0.97) and pH (5.5 or 4.5). The bacteria studied were susceptible to the action of the antimicrobials individually with minimal inhibitory concentrations that varied from 800-ppm potassium sorbate for Staph. aureus at a(w) 0.99, and pH 5.5 to 100-ppm thymol or carvacrol for the four studied bacteria at a(w) 0.97 and pH 4.5. Several binary mixtures of potassium sorbate with thymol, carvacrol or eugenol inhibited bacterial growth. Antimicrobial agent inhibitory concentrations in the mixture varied among bacteria, additionally depending on the a(w) and the pH tested. CONCLUSIONS: Synergistic binary mixtures with fractional inhibitory concentration index <0.6 include 100- or 200-ppm potassium sorbate with 50- or 100-ppm thymol, carvacrol or eugenol. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergistic combinations could be useful in reducing the amounts of antimicrobials needed to inhibit growth, thus diminishing consumer concerns regarding chemical preservatives.  相似文献   

10.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to a w 0.93 were more rapid than in unsupplemented media ( a w 0.99). Although growth in unsupplemented medium was lower at 35°C, incubation at 21°C or 35°C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 μg potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35°C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35°C than in cultures incubated at 21° in media both with and without 300 μg potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at - 18°C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 μg potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21°C. Sensitivity to freezing increased when cultures were incubated at 21°C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

11.
The effects of antimicrobial food additives on growth and ochratoxin A production by Aspergillus sulphureus NRRL 4077 and Penicillium viridicatum NRRL 3711 were investigated. At pH 4.5, growth and toxin production by both A. sulphureus and P. viridicatum were completely inhibited by 0.02% potassium sorbate, 0.067% methyl paraben, 0.0667% methyl paraben, and 0.2% sodium propionate. At pH 5.5, 0.134% potassium sorbate and 0.067% methyl paraben completely inhibited growth and ochratoxin A production by both fungi. Sodium bisulfite at 0.1%, the maximum level tested, was found to inhibit growth of A. sulphureus and P. viridicatum by 45 and 89%, respectively. Toxin production was inhibited by 97 and 99%, respectively. Sodium propionate (0.64%) at pH 5.5 inhibited growth of A. sulphureus and P. viridicatum by 76 and 90%, respectively. Toxin production was inhibited by greater than 99% for each fungus. Antimicrobial agents were ranked as to effectiveness by comparing the level required for complete inhibition of ochratoxin A production to the highest antimicrobial agent level normally used in food. At pH 4.5, the most effective inhibitor of growth and toxin production was potassium sorbate, followed by sodium propionate, methyl paraben, and sodium bisulfite, respectively, for both fungi. However, at pH 5.5, the most effective antimicrobial agents for inhibiting ochratoxin production were methyl paraben and potassium sorbate, followed by sodium propionate. Sodium bisulfite was not highly inhibitory to these toxigenic fungi at the higher pH value tested.  相似文献   

12.
AIMS: to study and model the effect of sodium acetate, sodium lactate, potassium sorbate and combination of acid salts on the behaviour of Listeria monocytogenes in ground pork. METHODS AND RESULTS: Water activity (a(w)), pH and concentration of acid salt of the meat were adjusted. The behaviour of inoculated L. monocytogenes was studied and modelled according to physicochemical parameters values. Whatever the acid salt concentration used, we observed an inhibition of the growth of L. monocytogenes at pH 5.6 and a(w) 0.95. At pH 6.2 and a(w) 0.97, addition of 402 mmol l(-1) of sodium lactate or 60 mmol l(-1) of potassium sorbate was required to observe a slower growth. CONCLUSIONS: The inhibitory effect of acid salts was a function of pH, a(w), as well as of the nature and concentration of acid salts added. When one acid salt was added, the Augustin's model (Augustin et al. 2005) yielded generally correct predictions of either the survival or growth of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The suggested model can be used for risk assessment concerning L. monocytogenes in pork products.  相似文献   

13.
The effects of potassium sorbate, sodium hypophosphite, sodium tripolyphosphate, sodium nitrite, and linoleic acid on the germination and outgrowth of Clostridium botulinum type E spores were studied in microcultures. At pH 5.8 to 6.0 in liver veal agar, the germination rate was decreased to nearly zero with 1.0, 1.5, or 2.0% sorbate. At pH 7.0 t 7.2, these levels of sorbate afforded germination and outgrowth of abnormally shaped cells that were defective in cell division. At the high pH range, 0.5 or 1.0% hypophosphite had effects similar to those of sorbate. The use of 0.05% sodium nitrite with sorbate enhanced the lysis of outgrowing cells at pH 7.2 or lower. Emergence and elongation were inhibited by 0.05% linoleic acid with or without 1.0% sorbate at pH 7.0 to 7.2. The addition of 0.5% tripolyphosphate to media containing 1.5% sorbate at pH 7.1 prevented normal cell growth to an extent greater than with sorbate alone.  相似文献   

14.
The effects of antimicrobial food additives on growth and ochratoxin A production by Aspergillus sulphureus NRRL 4077 and Penicillium viridicatum NRRL 3711 were investigated. At pH 4.5, growth and toxin production by both A. sulphureus and P. viridicatum were completely inhibited by 0.02% potassium sorbate, 0.067% methyl paraben, 0.0667% methyl paraben, and 0.2% sodium propionate. At pH 5.5, 0.134% potassium sorbate and 0.067% methyl paraben completely inhibited growth and ochratoxin A production by both fungi. Sodium bisulfite at 0.1%, the maximum level tested, was found to inhibit growth of A. sulphureus and P. viridicatum by 45 and 89%, respectively. Toxin production was inhibited by 97 and 99%, respectively. Sodium propionate (0.64%) at pH 5.5 inhibited growth of A. sulphureus and P. viridicatum by 76 and 90%, respectively. Toxin production was inhibited by greater than 99% for each fungus. Antimicrobial agents were ranked as to effectiveness by comparing the level required for complete inhibition of ochratoxin A production to the highest antimicrobial agent level normally used in food. At pH 4.5, the most effective inhibitor of growth and toxin production was potassium sorbate, followed by sodium propionate, methyl paraben, and sodium bisulfite, respectively, for both fungi. However, at pH 5.5, the most effective antimicrobial agents for inhibiting ochratoxin production were methyl paraben and potassium sorbate, followed by sodium propionate. Sodium bisulfite was not highly inhibitory to these toxigenic fungi at the higher pH value tested.  相似文献   

15.
AIM: To determine if cell death from osmotic stress is because of lack of sufficient energy to maintain cell metabolism. Additionally, the solute-specific effect of five humectants on bacterial osmoregulation and cell survival was examined. METHODS AND RESULTS: Staphylococcus aureus was placed into 84% relative humidity (RH) broth (five humectants used individually). ATP, ADP and cell viability measurements were determined over time. The results indicate that ATP is not the limiting factor for cell survival under excessive osmotic stress. Although the same RH was achieved with various humectants, the rates of cell death varied greatly as did the sensitivities of the cell populations to osmotic stress. CONCLUSIONS: The results from this study provide strong evidence that mechanisms of osmotic inactivation depend on the solute. The molecular mobility of the system may be an important means to explain these differences. SIGNIFICANCE AND IMPACT OF THE STUDY: By bringing together an understanding of solute-specific effects, microbial physiology and genetics, the mechanisms of inactivation of micro-organisms by solute-specific osmotic stress may be elucidated, and this knowledge may then be exploited to ensure the production of high quality, safe foods.  相似文献   

16.
The effects of heat and NaCl on the activity of superoxide dismutase from Staphylococcus aureus were examined. A linear decrease in superoxide dismutase activity occurred when S. aureus MF-31 cells were thermally stressed for 90 min at 52% C in 100 mM potassium phosphate buffer (pH 7.2). After 20 min of heating, only 5% of the superoxide dismutase activity was lost. Heating for 60, 90 and 120 min resulted in decreases of approximately 10, 22, and 68%, respectively. The rates of thermal inactivation of superoxide dismutase from S. aureus strains 196E and 210 were similar and slightly greater than those of strains MF-31, S-6, and 181. The addition of NaCl before or after heating resulted in increased losses of superoxide dismutase activity.  相似文献   

17.
A study was made of the effects of potassium sorbate on growth, morphology, and heat sensitivity of an osmotolerant yeast, Zygosaccharomyces rouxii, grown in media (water activity (aw) 0.93) supplemented with glucose and sucrose. Growth patterns of Z. rouxii in YM broth supplemented with glucose (YMBG) and sucrose (YMBS) were similar, although increased potassium sorbate concentration in both media resulted in decreased growth rates. Growth in YMBS containing potassium sorbate was not as prolific as that in YMBG containing potassium sorbate. Inhibition of growth was indicated by decreased absorbance (at 600 nm) of cells grown in YMBS and in YMBG and YMBS supplemented with potassium sorbate at 600 or 1000 micrograms/mL. Slight decreases in cell size and alteration of cellular morphology were associated with increased potassium sorbate concentration. Plasmolysis increased as potassium sorbate concentration was elevated in YMBS but not in YMBG. Tolerance of Z. rouxii to potassium sorbate was enhanced by previous adaptation of cells in media with elevated potassium sorbate concentrations. Heat resistance of cells unadapted to potassium sorbate showed little or no increase regardless of culture age, but increased substantially in cells grown in media containing potassium sorbate, particularly YMBS.  相似文献   

18.
几种白蚁诱饵防霉剂的防霉效果比较   总被引:1,自引:0,他引:1  
比较了8种供试防霉剂对黑翅土白蚁Odontotermes formosanus(Shiraki)喜食饵料小米粉的防霉效果,结果表明2‰山梨酸钾和0.75‰对小米粉的防霉效果较好,两者都能使野外试验坑中的小米粉样品8d后不发霉。室内试验结果表明,2‰山梨酸钾不影响黑翅土白蚁对小米粉的取食量;而0.75‰百菌清显著降低了黑翅土白蚁对小米粉的取食量,对黑翅土白蚁有明显的驱避作用。野外试验进一步表明,投饵8d后,小米粉诱饵、小米粉+2‰山梨酸钾诱饵、小米粉+0.75‰百菌清诱饵的发霉率分别为100,20和30%,而三者的被食率分别为27.67,53.70和19.15%。由此可见,2‰山梨酸钾最适合作为白蚁诱饵的防霉剂。  相似文献   

19.
The effects of sodium benzoate and potassium sorbate added to the recovery medium, at different pH values (6·5, 6·0 and 5·0), on the recovery rates and heat resistance of Bacillus stearothermophilus spores (ATCC 12980, 7953, 15951 and 15952) were investigated. Heated spores of strains 12980 and 7953 were inhibited by sorbate concentrations over 0·05%. Potassium sorbate at concentrations as low as 0·025%, and sodium benzoate at 0·1%, were very effective inhibitory agents for heat-damaged spores. Their effectiveness always increased at pH 5·0, at which no growth occurred, with sodium benzoate for strains 7953, 15951 and 15952, and with potassium sorbate for strains 15951 and 15952. Decimal reduction times, whenever recovery was possible, were not significantly ( P  > 0·05) affected. None of these compounds modified the z -values obtained for the spores of the four strains, which had a mean value of 7·53 ± 0·28.  相似文献   

20.
Gradient plates were used to investigate the effects of varying temperature, pH, and sodium chloride (NaCl) concentration on nisin inhibition of Staphylococcus aureus and Listeria monocytogenes, Nisin was incorporated into the plates of 0, 50, 100, 250, and 500 IU ml -1. Gradients of pH (3.7 to 7.92) at right angles to NaCl concentration (2.1 to 7% [wt/vol]) were used for the plates, which were incubated at 20, 25, 30 and 35 degrees C. Growth on the plates were recorded by eye and by image analysis. The presence of viable but nongrowing cells was revealed by transfer to nongradient plates. Lower temperatures and greater NaCl concentrations increased the nisin inhibition of S. aureus synergistically. Increasing the NaCl concentration potentiated the nisin action against L. monocytogenes; the effect of temperature difference was not so apparent. Between pH 7.92 and ca. pH 5, a fall pH appeared to increase nisin's effectiveness against both organisms. At more acid pH values (ca. pH 4.5 to 5), the organisms showed resistance to both nisin and NaCl at 20 and 25 degrees C. Similar results were obtained with one-dimensional liquid cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号