首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Enhanced histone acetylation and transcription: a dynamic perspective   总被引:11,自引:0,他引:11  
  相似文献   

9.
10.
Acetate supplementation increases brain, heart, and liver acetyl-CoA levels and reduces lipopolysaccharide-induced neuroinflammation. Because intracellular acetyl-CoA can be used to alter histone acetylation-state, using Western blot analysis, we measured the temporal effect that acetate supplementation had on brain and liver histone acetylation following a single oral dose of glyceryl triacetate (6 g/kg). In parallel experiments, we measured the effect that acetate supplementation had on histone deacetylase (HDAC) and histone acetyltransferase (HAT) enzymic activities and the expression levels of HDAC class I and II enzymes using Western blot analysis. We found that acetate supplementation increased the acetylation-state of brain histone H4 at lysine 8 at 2 and 4 h, histone H4 at lysine 16 at 4 and 24 h, and histone H3 at lysine 9 at 4 h following treatment. No changes in other forms of brain or liver H3 and H4 acetylation-state were found at any post-treatment times measured. Enzymic HAT and HDAC assays on brain extracts showed that acetate supplementation had no effect on HAT activity, but significantly inhibited by 2-fold HDAC activity at 2 and 4 h post-treatment. Western blot analysis demonstrated that HDAC 2 levels were decreased at 4 h following treatment. Based on these results, we conclude that acetyl-CoA derived from acetate supplementation increases brain histone acetylation-state by reducing HDAC activity and expression.  相似文献   

11.
12.
13.
14.
Wu J  Zhou Z  Hu Y  Dong S 《遗传学报》2012,39(8):375-384
Butyrate has been recently identified as a natural ligand of the G-protein-coupled receptor 41(GPR41).In addition,it is an inhibitor of histone deacetylase(HDAC).Butyrate treatment results in the hyperacetylation of histones,with resultant multiple biological effects including inhibition of proliferation,induction of cell cycle arrest,and apoptosis,in a variety of cultured mammalian cells.However,it is not clear whether GPR41 is actively involved in the above-mentioned processes.In this study,we generated a stable cell line expressing the hGPR41 receptor in order to investigate the involvement of GPR41 on butyrate-induced biochemical and physiologic processes.We found that GPR41 activation may be a compensatory mechanism to counter the increase in histone H3 acetylation levels induced by butyrate treatment.Moreover,GPR41 had an inhibitory effect on the anti-proliferative,pro-apoptotic effects of butyrate.GPR41 expression induced cell cycle arrest at the G1-stage,while its activation by butyrate can cause more cells to pass the G1 checkpoint.These results indicated that GPR41 was associated with histone acetylation and might be involved in the acetylation-related regulation of cell processes including proliferation,apoptosis,and the cell cycle.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号