首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional myocardial flow distributions in Langendorff rat hearts under Tyrode and blood perfusion were assessed by tracer digital radiography (100-microm resolution). Flow distributions during baseline and maximal hyperemia following a 60-s flow cessation were evaluated by the coefficient of variation of regional flows (CV; related to global flow heterogeneity) and the correlation between adjacent regional flows (CA; inversely related to local flow randomness). These values were obtained for the original images (64(2) pixels) and for coarse-grained images (32(2), 16(2), and 8(2) blocks of nearby pixels). At a given point in time during baseline, both CV and CA were higher in blood (n = 7) than in Tyrode perfusion (n = 7) over all pixel aggregates (P < 0.05, two-way ANOVA). During the maximal hyperemia, CV and CA were still significantly higher in blood (n = 7) than in Tyrode perfusion (n = 7); however, these values decreased substantially in blood perfusion and the CV and CA differences became smaller than those at baseline accordingly. During basal blood perfusion, the 60-s average flow distribution (n = 7) showed a smaller CV and CA than those at a given point in time (P < 0.05, two-way ANOVA). Coronary flow reserve was significantly higher in blood than in Tyrode perfusion. In conclusion, the flow heterogeneity and the local flow similarity are both higher in blood than in Tyrode perfusion, probably due to the different degree of coronary tone preservation and the presence or absence of blood corpuscles. Under blood perfusion, temporal flow fluctuations over 60-s order are largely involved in shaping microregional flow distributions.  相似文献   

2.
Gravity is a minor determinant of pulmonary blood flow distribution   总被引:9,自引:0,他引:9  
Regional pulmonary blood flow in dogs under zone 3 conditions was measured in supine and prone postures to evaluate the linear gravitational model of perfusion distribution. Flow to regions of lung that were 1.9 cm3 in volume was determined by injection of radiolabeled microspheres in both postures. There was marked perfusion heterogeneity within isogravitational planes (coefficient of variation = 42.5%) as well as within gravitational planes (coefficient of variation = 44.2 and 39.2% in supine and prone postures, respectively; P = 0.02). On average, vertical height explained only 5.8 and 2.4% of the flow variability in the supine and prone postures, respectively. Whereas the gravitational model predicts that regional flows should be negatively correlated when measured in supine and prone postures, flows in the two postures were positively correlated, with an r2 of 0.708 +/- 0.050. Regional perfusion as a function of distance from the center of a lung explained 13.4 and 10.8% of the flow variability in the supine and prone postures, respectively. A linear combination of vertical height and radial distance from the centers of each lung provided a better-fitting model but still explained only 20.0 and 12.0% of the flow variability in the supine and prone postures, respectively. The entire lung was searched for a region of contiguous lung pieces (22.8 cm3) with high flow. Such a region was found in the dorsal area of the lower lobes in six of seven animals, and flow to this region was independent of posture. Under zone 3 conditions, neither gravity nor radial location is the principal determinant of regional perfusion distribution in supine and prone dogs.  相似文献   

3.
Although recent high-resolution studies demonstrate the importance of nongravitational determinants for both pulmonary blood flow and ventilation distributions, posture has a clear impact on whole lung gas exchange. Deterioration in arterial oxygenation with repositioning from prone to supine posture is caused by increased heterogeneity in the distribution of ventilation-to-perfusion ratios. This can result from increased heterogeneity in regional blood flow distribution, increased heterogeneity in regional ventilation distribution, decreased correlation between regional blood flow and ventilation, or some combination of the above (Wilson TA and Beck KC, J Appl Physiol 72: 2298-2304, 1992). We hypothesize that, although repositioning from prone to supine has relatively small effects on overall blood flow and ventilation distributions, regional changes are poorly correlated, resulting in regional ventilation-perfusion mismatch and reduction in alveolar oxygen tension. We report ventilation and perfusion distributions in seven anesthetized, mechanically ventilated pigs measured with aerosolized and injected microspheres. Total contributions of pulmonary structure and posture on ventilation and perfusion heterogeneities were quantified by using analysis of variance. Regional gradients of posture-mediated change in ventilation, perfusion, and calculated alveolar oxygen tension were examined in the caudocranial and ventrodorsal directions. We found that pulmonary structure was responsible for 74.0 +/- 4.7% of total ventilation heterogeneity and 63.3 +/- 4.2% of total blood flow heterogeneity. Posture-mediated redistribution was primarily oriented along the caudocranial axis for ventilation and along the ventrodorsal axis for blood flow. These mismatched changes reduced alveolar oxygen tension primarily in the dorsocaudal lung region.  相似文献   

4.
The purpose of this study was to test the hypothesis that exchange transfusion with liposomal hemoglobin (LH) reduces the microheterogeneity of regional myocardial flows while sustaining cardiac function. Neo Red Cell mixed with albumin was used as the LH solution, in which the LH volume fraction was 17 approximately 18% and hemoglobin density was nearly two-thirds smaller than in rat blood. Regional myocardial flows in left ventricular free walls were measured by tracer digitalradiography (100-mum resolution) in anesthetized rats with or without 50% blood-LH exchange transfusion. Within-layer flow distributions showed lower heterogeneity with (n = 8) than without (n = 8) LH transfusion. No extravasation of hemoglobin was confirmed by 3,3-diaminobenzidin staining (n = 2). Carotid flow increased by 68% due to LH transfusion, whereas arterial pressure and heart rate remained unchanged. On the other hand, cross-circulated rat hearts (n = 7) were used to evaluate the effects of 50% blood-LH exchange on coronary flow and tone preservation under 300-beats/min pacing and 100-mmHg perfusion pressure. Blood-LH exchange caused a 71% increase of coronary flow and 10% decrease of percent flow increase during hyperemia after 30-s flow interruption. Myocardial O(2) supply and consumption increased by 9% and 10%, respectively, whereas myocardial O(2) extraction remained unchanged. The large increases of in vivo carotid flow and coronary flow in cross-circulated hearts due to LH coperfusion could be explained by the reduction of apparent flow viscosity. These results suggest that under LH coperfusion, the microheterogeneity of myocardial flows decreases with increased coronary flow while fairly preserving coronary tone and cardiac function.  相似文献   

5.
Perfusion heterogeneities in organs such as the heart obey a power law as a function of scale, a behavior termed "fractal." An explanation of why vascular systems produce such a specific perfusion pattern is still lacking. An intuitive branching tree model is presented that reveals how this behavior can be generated as a consequence of scale-independent branching asymmetry and fractal vessel resistance. Comparison of computer simulations to experimental data from the sheep heart shows that the values of the two free model parameters are realistic. Branching asymmetry within the model is defined by the relative tissue volume being fed by each branch. Vessel ordering for fractal analysis of morphology based on fed or drained tissue volumes is preferable to the commonly used Strahler system, which is shown to depend on branching asymmetry. Recently, noninvasive imaging techniques such as PET and MRI have been used to measure perfusion heterogeneity. The model allows a physiological interpretation of the measured fractal parameters, which could in turn be used to characterize vascular morphology and function.  相似文献   

6.
Several studies have reported an extensive regional heterogeneity in myocardial blood flow. The reported coefficients of variation for regional myocardial perfusion range from about 0.2 to 0.4 in normotensive animals. The spatial distribution of myocardial perfusion during haemorrhagic hypotension seems not to have been assessed. The goal of the present study was to determine the regional heterogeneity in myocardial blood flow within the rabbit left ventricle during normal conditions and after haemorrhagic hypotension. Radioactive microspheres were infused into the left ventricle in barbiturate anaesthetized rabbits over either 30 or 120 sec. The haemorrhagic hypotension was induced by bleeding, so that mean arterial blood pressure was reduced to about 50% of control. The left ventricles were divided into samples of about 0.025 g each. Regional heterogeneity in the blood flow was expressed as the coefficient of variation corrected for the Poisson distribution of microspheres (CVc). The CVc was 0.37 +/- 0.09 (mean +/- SD) during control and 0.41 +/- 0.11 after bleeding, the CVc obtained after bleeding being somewhat higher than during control (P < 0.05). We obtained a high correlation coefficient (tau about 0.68) between regional perfusion values at control and after bleeding which indicates a stable perfusion pattern within the myocardium. We conclude that the regional distribution of coronary blood flow within the left ventricle is markedly heterogenous during control condition and that this pattern is not changed during haemorrhagic hypotension.  相似文献   

7.
8.
Heterogeneity of regional coronary blood flow is caused in part by heterogeneity in O(2) demand in the normal heart. We investigated whether myocardial O(2) supply/demand mismatching is associated with the myocardial depression of sepsis. Regional blood flow (microspheres) and O(2) uptake ([(13)C]acetate infusion and analysis of resultant NMR spectra) were measured in about nine contiguous tissue samples from the left ventricle (LV) in each heart. Endotoxemic pigs (n = 9) showed hypotension at unchanged cardiac output with a fall in LV stroke work and first derivative of LV pressure relative to controls (n = 4). Global coronary blood flow and O(2) delivery were maintained. Lactate accumulated in arterial blood, but net lactate extraction across the coronary bed was unchanged during endotoxemia. When LV O(2) uptake based on blood gas versus NMR data were compared, the correlation was 0.73 (P = 0.007). While stable over time in controls, regional blood flows were strongly redistributed during endotoxin shock, with overall flow heterogeneity unchanged. A stronger redistribution of blood flow with endotoxin was associated with a larger fall in LV function parameters. Moreover, the correlation of regional O(2) delivery to uptake fell from r = 0.73 (P < 0.001) in control to r = 0.18 (P = 0.25, P = 0.009 vs. control) in endotoxemic hearts. The results suggest a redistribution of LV regional coronary blood flow during endotoxin shock in pigs, with regional O(2) delivery mismatched to O(2) demand. Mismatching may underlie, at least in part, the myocardial depression of sepsis.  相似文献   

9.
Normal aging is associated with a decline in pulmonary function and efficiency of gas exchange, although the effects on the spatial distribution of pulmonary perfusion are poorly understood. We hypothesized that spatial pulmonary perfusion heterogeneity would increase with increasing age. Fifty-six healthy, nonsmoking subjects (ages 21-76 yr) underwent magnetic resonance imaging with arterial spin labeling (ASL) using a Vision 1.5-T whole body scanner (Siemens Medical Systems, Erlangen, Germany). ASL uses a magnetically tagged bolus to generate perfusion maps where signal intensity is proportional to regional pulmonary perfusion. The spatial heterogeneity of pulmonary blood flow was quantified by the relative dispersion (RD = SD/mean, a global index of heterogeneity) of signal intensity for voxels within the right lung and by the fractal dimension (D(s)). There were no significant sex differences for RD (P = 0.81) or D(s) (P = 0.43) when age was considered as a covariate. RD increased significantly with increasing age by approximately 0.1/decade until age 50-59 yr, and there was a significant positive relationship between RD and age (R = 0.48, P < 0.0005) and height (R = 0.39, P < 0.01), but not body mass index (R = 0.07, P = 0.67). Age and height combined in a multiple regression were significantly related to RD (R = 0.66, P < 0.0001). There was no significant relationship between RD and spirometry or arterial oxygen saturation. D(s) was not related to age, height, spirometry, or arterial oxygen saturation. The lack of relationship between age and D(s) argues against an intrinsic alteration in the pulmonary vascular branching with age as being responsible for the observed increase in global spatial perfusion heterogeneity measured by the RD.  相似文献   

10.
11.
A hemodynamic analysis of coronary blood flow must be based on the measured branching pattern and vascular geometry of the coronary vasculature. We recently developed a computer reconstruction of the entire coronary arterial tree of the porcine heart based on previously measured morphometric data. In the present study, we carried out an analysis of blood flow distribution through a network of millions of vessels that includes the entire coronary arterial tree down to the first capillary branch. The pressure and flow are computed throughout the coronary arterial tree based on conservation of mass and momentum and appropriate pressure boundary conditions. We found a power law relationship between the diameter and flow of each vessel branch. The exponent is approximately 2.2, which deviates from Murray's prediction of 3.0. Furthermore, we found the total arterial equivalent resistance to be 0.93, 0.77, and 1.28 mmHg.ml(-1).s(-1).g(-1) for the right coronary artery, left anterior descending coronary artery, and left circumflex artery, respectively. The significance of the present study is that it yields a predictive model that incorporates some of the factors controlling coronary blood flow. The model of normal hearts will serve as a physiological reference state. Pathological states can then be studied in relation to changes in model parameters that alter coronary perfusion.  相似文献   

12.
Fractal modeling of pulmonary blood flow heterogeneity   总被引:4,自引:0,他引:4  
The heterogeneity of pulmonary blood flow is not adequately described by gravitational forces alone. We investigated the flow distributions predicted by two fractally branching vascular models to determine how well such networks could explain the observed heterogeneity. The distribution of flow was modeled with a dichotomously branching tree in which the fraction of blood flow from the parent to the daughter branches was gamma and 1-gamma repeatedly at each generation. In one model gamma was held constant throughout the network, and in the other model gamma varied about a mean of 0.5 with a standard deviation of sigma. Both gamma and sigma were optimized in each model for the best fit to pulmonary blood flow data from experimental animals. The predicted relative dispersion of flow from the two model fractal networks produced an excellent fit to the observed data. These fractally branching models relate structure and function of the pulmonary vascular tree and provide a mechanism to describe the spatially correlated distribution of flow and the gravity-independent heterogeneity of blood flow.  相似文献   

13.
Hemorrhagic shock alters heterogeneity of regional myocardial perfusion (RMP) in the presence of critical coronary stenosis in pigs. Conventional resuscitation has failed to reverse these effects. We hypothesized that improvement of the resuscitation regime would lead to restoration of RMP heterogeneity. Diaspirin-cross-linked hemoglobin (10 g/dl; DCLHb) and human serum albumin (8.0 g/dl; HSA) were used. After baseline, a branch of the left coronary artery was stenosed; thereafter, hemorrhagic shock was induced. Resuscitation was performed with either DCLHb or HSA. At baseline, the fractcal dimension (D) of subendocardial myocardium was 1.31 +/- 0.083 (HSA) and 1.35 +/- 0.106 (DCLHb) (mean +/- SD). Coronary stenosis increased subendocardial D slightly but consistently only in the DCLHb group (1.39 +/- 0.104; P < 0.05). Shock reduced subendocardial D: 1.21 +/- 0.093 (HSA; P = 0.10), 1.25 +/- 0.092 (DCLHb; P < 0.05). Administration of DCLHb increased subendocardial D in 7 of 10 animals (1.31 +/- 0.097; P = 0.066). HSA was ineffective in this respect. DCLHb infusion restored arterial pressure and increased cardiac index (CI) to 80% of baseline values. Administration of HSA left animals hypotensive (69 mmHg) and increased CI to 122% of the average baseline value. Shock-induced disturbances of the distribution of RMP were improved by administration of DCLHb but not by HSA.  相似文献   

14.
Two models of optimal branching structure of the vascular tree are compared. Murray’s minimum work model derived from minimum energy loss due to flow and volume in the duct system is proved to be included as a mathematical group in the authors’ model defined by the minimum volume under determinant pressure, flow and position at the terminals. The problem about heterotypical trees which are identical at the terminal conditions but different in the topological order of branch combinations are discussed, applying the results of analyses on the equivalent duct of uniform terminal pressure trees. It is proved that the minimum work tree has the least energy loss compared with its heterotypical minimum volume trees and is a better model of branching structure of the vascular tree.  相似文献   

15.
Studies of the origin of pulmonary blood flow heterogeneity have highlighted the significant role of vessel branching structure on flow distribution. To enable more detailed investigation of structure-function relationships in the pulmonary circulation, an anatomically based finite element model of the arterial and venous networks has been developed to more accurately reflect the geometry found in vivo. Geometric models of the arterial and venous tree structures are created using a combination of multidetector row X-ray computed tomography imaging to define around 2,500 vessels from each tree, a volume-filling branching algorithm to generate the remaining accompanying conducting vessels, and an empirically based algorithm to generate the supernumerary vessel geometry. The explicit generation of supernumerary vessels is a unique feature of the computational model. Analysis of branching properties and geometric parameters demonstrates close correlation between the model geometry and anatomical measures of human pulmonary blood vessels. A total of 12 Strahler orders for the arterial system and 10 Strahler orders for the venous system are generated, down to the equivalent level of the terminal bronchioles in the bronchial tree. A simple Poiseuille flow solution, assuming rigid vessels, is obtained within the arterial geometry of the left lung, demonstrating a large amount of heterogeneity in the flow distribution, especially with inclusion of supernumerary vessels. This model has been constructed to accurately represent available morphometric data derived from the complex asymmetric branching structure of the human pulmonary vasculature in a form that will be suitable for application in functional simulations.  相似文献   

16.
Chronic coronary artery stenosis results in patchy necrosis in the dependent myocardium and impairs global and regional left ventricular (LV) function in rats in vivo. The aim of the present study was to compare regional myocardial blood flow (RMBF) and function (F) in poststenotic myocardium by using magnetic resonance imaging (MRI) and to compare MRI blood flow changes to histological alterations to assess whether RMBF in the viable poststenotic tissue remains normal. MRI was performed in 11 anesthetized Wistar rats with 2-wk stenosis of the left coronary artery. Postmortem, the extent of fibrotic tissue was quantified. Poststenotic RMBF was significantly reduced to 2.21 +/- 0.30 ml.g(-1).min(-1) compared with RMBF in the remote myocardium (4.05 +/- 0.50 ml.g(-1).min(-1)). A significant relationship between the poststenotic RMBF (%remote area) and the poststenotic F (%remote myocardium) was calculated (r = 0.61, P < 0.05). Assuming perfusion in scar tissue to be 32 +/- 5% of perfusion of remote myocardium, as measured in five additional rats, and that in remote myocardium to be 114 +/- 25% of that in normal myocardium, as assessed in five sham rats, the calculated perfusion in partially fibrotic tissue samples (35.7 +/- 5.2% of analyzed area) was 2.88 +/- 0.18 ml.g(-1).min(-1), whereas measured MRI perfusion was only 1.86 +/- 0.24 ml.g(-1).min(-1) (P < 0.05). These results indicate that resting perfusion in viable poststenotic myocardium is moderately reduced. Alterations in global and regional LV function are therefore secondary to both patchy fibrosis and reduced resting perfusion.  相似文献   

17.
The magnitude and regional distribution of local gas transport during constant-flow ventilation (CFV) were quantified by imaging the washout of nitrogen 13 (13NN) from anesthetized and paralyzed mongrel dogs with positron emission tomography. Equal jet flows, through two 2-mm-ID bronchial catheters 1 cm distal to the carina, were adjusted to provide eucapnic CFV (total flow = 57.6 ml.s-1.kg-1). Basal, midheart, and apical transverse sections were studied in supine and prone anesthetized dogs. The ventilation per unit volume (sV) of selected areas was computed from local 13NN concentration vs. time curves during washout. To separate the regional contributions of CFV and cardiogenic oscillation to enhanced molecular diffusion, additional supine dogs were also studied during unilateral CFV. In this protocol the CFV jet flow was delivered to a single lung while the contralateral lung was left apneic. For each lung, washout data were obtained under CFV and apnea both living and postmortem animals. The local contributions of diffusion, CFV jet effects, and cardiac activity to gas transport were evaluated and tested for additive and multiplicative synergistic interactions. The regional distribution of gas transport during CFV was found to be highly nonuniform and characterized by higher ventilation to regions located close to the main bronchi and those located in the direction in which the CFV jet pointed. No major differences were observed between supine and prone positions. This regional pattern of ventilation distribution was found to be the result of complementary and nearly multiplicative interaction between the regional effects of the CFV jet, concentrated in the central airways, and the preferential cardiogenic gas transport enhancement in ventral regions close to the heart. The data were also analyzed with a model that divides the regional diffusive gas transport resistance into a central component, affected by the CFV jet, and a peripheral component, affected only by cardiac activity. This analysis showed substantial regional heterogeneities in the effects of the different gas transport mechanisms, which are consistent with the geometry of the bronchial tree and the location of the heart in the dog. The results indicate that regional nonuniformities must be considered when modeling gas transport in CFV.  相似文献   

18.
In 11 anesthetized pigs, the left anterior descending coronary artery (LAD) was cannulated and pump perfused with blood before and during maximum adenosine vasodilation. For LAD plasma flows (F) ranging from 0.42 to 3.6 ml.min-1.g perfused tissue-1, we injected radiolabeled microspheres to measure heterogeneity and used the multiple indicator-dilution method to measure permeability-surface area product (PS) for EDTA. Heterogeneity of flow from the LAD was expressed as relative dispersion (RD) = standard deviation of flow/mean flow. Values of RD, corrected for tissue sample size using fractal theory, ranged from 13 to 87%, approaching 16-35% at high F. We developed a "variable-recruitment model" of regional heterogeneous capillary transport to correct PS for flow heterogeneity and capillary surface area recruitment. Values of PS ranged from 0.14 to 0.96 ml.min-1.g-1. Accounting for heterogeneity increased PS values by 0-18% compared with homogeneous values. Results revealed PS to be proportional to flow up to F = 1.5-2.1 ml.min-1.g-1 and then was constant at higher flows. The initial increase of PS with F may be due to capillary recruitment. When full recruitment is reached, PS becomes independent of F. We conclude that flow heterogeneity is significant but not readily predictable in the pig myocardium and that the use of microspheres to correct indicator-dilution data for flow heterogeneity improves the interpretation of multiple-tracer studies, particularly when tracers are used to study interventions that may alter flow distribution.  相似文献   

19.
Relative contribution of gravity to pulmonary perfusion heterogeneity.   总被引:2,自引:0,他引:2  
We designed a series of experiments and analyses to quantify the contribution of gravity to pulmonary perfusion heterogeneity. Regional pulmonary perfusion was measured in five anesthetized and ventilated dogs in both supine and prone positions by use of radiolabeled microspheres injected during apnea at functional residual capacity. Measurements of flow were repeated in each position, and the sequence of positions was prospectively designed to nullify any effect of order. The lungs of each animal were excised, perfused with saline until clear, dried at an inflation pressure of 25 cmH2O, and cut into 1.9-cm3 pieces. Each piece was weighed and the radioactivity determined in a scintillation counter. Measurement errors were minimized by excluding lung pieces that had greater than 25% airway and weighed less than 10 mg or greater than 60 mg. Weight-normalized flows in each position and repetition were determined for each lung piece. An analysis of variance model was used to identify the percentage of variation in regional flow that was due to position (supine vs. prone), to random error and time (measurement and repetition), and to structure, where structure was defined as the component of flow that remained constant across position and replication. The contributions of position, error/time, and structure to the total variability of flow across the five dogs were 7.8 +/- 0.6, 8.4 +/- 8.3, and 83.8 +/- 8.4%, (SD), respectively. Because the contribution of position represents the additive effect of gravity between two opposite positions, the contribution of gravity to perfusion heterogeneity in one position may be as little as 4%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation has fractal characteristics similar to blood flow. We measured regional ventilation and perfusion with aerosolized and injected fluorescent microspheres in six anesthetized, mechanically ventilated pigs in both prone and supine postures. Adjacent regions were clustered into progressively larger groups. Coefficients of variation were calculated for each cluster size to determine fractal dimensions. At the smallest size lung piece, local ventilation and perfusion are highly correlated, with no significant difference between ventilation and perfusion heterogeneity. On average, the fractal dimension of ventilation is 1.16 in the prone posture and 1. 09 in the supine posture. Ventilation has fractal properties similar to perfusion. Efficient gas exchange is preserved, despite ventilation and perfusion heterogeneity, through close correlation. One potential explanation is the similar geometry of bronchial and vascular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号