首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The co-ordination of cell wall synthesis with plant cell expansion is an important topic of contemporary plant biology research. In studies of cell wall synthesis pathways, cellulose synthesis inhibitors are broadly used. It is demonstrated here that ancymidol, known as a plant growth retardant primarily affecting gibberellin biosynthesis, is also capable of inhibiting cellulose synthesis. Its ability to inhibit cellulose synthesis is not related to its anti-gibberellin action and possesses some unique features never previously observed when conventional cellulose synthesis inhibitors were used. It is suggested that ancymidol targets the cell wall synthesis pathway at a regulatory step where cell wall synthesis and cell expansion are coupled. The elucidation of the ancymidol target in plant cells could potentially contribute to our understanding of cell wall synthesis and cell expansion control.  相似文献   

2.
Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemicelluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.  相似文献   

3.
4.
Plant and fungal cells are surrounded by a cell wall rich in diverse polysaccharides and proteins. It has become apparent in recent years that the carbohydrates in the cell wall function not only to maintain cell shape and integrity, but also may serve as signals in plants. This review summarizes the evidence that biologically-active oligosaccharides (oligosaccharins) released from plant or microbial cell walls can serve as signals to regulate plant defense and plant growth and development. The oligosaccharins discussed include the fungal-derived hepta-β-glucoside and the plant cell wall-derived oligogalacturonides and xyloglucans. Possible mechanisms by which oligosaccharins may exert their effects on plant cells are discussed.  相似文献   

5.
Intrusive growth is a type of cell elongation when the rate of its longitudinal growth is higher than that of surrounding cells; therefore, these cells intrude between the neighboring cells penetrating the middle lamella. The review considers the classical example of intrusive growth, e.g., elongation of sclerenchyma fibers when the cells achieve the length of several centimeters. We sum the published results of investigations of plant fiber intrusive growth and present some features of intrusive growth characterized by the authors for flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers. The following characteristics of intrusive growth are considered: its rate and duration, relationship with the growth rate of surrounding cells, the type of cell elongation, peculiarities of the fiber primary cell wall structure, fibers as multinucleate cells, and also the control of intrusive growth. Genes, which expression is sharply reduced at suppression of intrusive growth, are also considered. Arguments for separation of cell elongation and secondary cell wall formation in phloem fibers and also data indicating diffuse type of cell enlargement during intrusive growth are presented.  相似文献   

6.
Palin R  Geitmann A 《Bio Systems》2012,109(3):397-402
The presence of a polysaccharidic cell wall distinguishes plant cells from animal cells and is responsible for fundamental mechanistic differences in organ development between the two kingdoms. Due to the presence of this wall, plant cells are unable to crawl and contract. On the other hand, plant cell size can increase by several orders of magnitude and cell shape can change from a simple polyhedron or cube to extremely intricate. This expansive cellular growth is regulated by the interaction between the cell wall and the intracellular turgor pressure. One of the principal cell wall components involved in temporal and spatial regulation of the growth process is pectin. Through biochemical changes to pectin composition and biochemical configuration, the properties of this material can be altered to trigger specific developmental processes. Here, the roles of pectin in three systems displaying rapid growth - the elongation zone of the root, the tip region of the pollen tube, and organ primordia formation at the shoot apical meristem - are reviewed.  相似文献   

7.
Plant cell morphogenesis depends critically on two processes: the deposition of new wall material at the cell surface and the mechanical deformation of this material by the stresses resulting from the cell's turgor pressure. We developed a model of plant cell morphogenesis that is a first attempt at integrating these two processes. The model is based on the theories of thin shells and anisotropic viscoplasticity. It includes three sets of equations that give the connection between wall stresses, wall strains and cell geometry. We present an algorithm to solve these equations numerically. Application of this simulation approach to the morphogenesis of tip-growing cells illustrates how the viscoplastic properties of the cell wall affect the shape of the cell at steady state. The same simulation approach was also used to reproduce morphogenetic transients such as the initiation of tip growth and other non-steady changes in cell shape. Finally, we show that the mechanical anisotropy built into the model is required to account for observed patterns of wall expansion in plant cells.  相似文献   

8.
Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.  相似文献   

9.
Cell wall modification is an important aspect of plant acclimation to environmental stresses. Structural changes of the existing cell wall mediated by various cell wall modifying proteins help a plant adjust to environmental changes by regulating growth and policing the entry of biotic agents. For example, accelerated shoot growth during submergence and shading allows some plants to escape these unfavorable conditions. This is mediated by the regulation of wall modifying proteins that alter cell wall structure and allow it to yield to turgor, thus fueling cellular expansion. Regulation of cell wall protein activity results in growth modulation during drought, where maintenance of root growth through changes in wall extensibility is an important adaptation to water deficit. Freeze-tolerant plants adjust their cell wall properties to prevent freezing-induced dehydration and also use the cell wall as a barrier against ice crystal propagation. Cell wall architecture is an important determinant of plant resistance to biotic stresses. A rigid cell wall can fend off pathogen attack by forming an impenetrable, physical barrier. When breached, products released during wall modification can trigger plant defense signaling. This review documents and discusses studies demonstrating the importance of timely cell wall modification during plant stress responses by focusing on a well-researched subset of wall modifying proteins.  相似文献   

10.
Wei C  Lintilhac PM 《Plant physiology》2007,145(3):763-772
In this article we investigate aspects of turgor-driven plant cell growth within the framework of a model derived from the Eulerian concept of instability. In particular we explore the relationship between cell geometry and cell turgor pressure by extending loss of stability theory to encompass cylindrical cells. Beginning with an analysis of the three-dimensional stress and strain of a cylindrical pressure vessel, we demonstrate that loss of stability is the inevitable result of gradually increasing internal pressure in a cylindrical cell. The turgor pressure predictions based on this model differ from the more traditional viscoelastic or creep-based models in that they incorporate both cell geometry and wall mechanical properties in a single term. To confirm our predicted working turgor pressures, we obtained wall dimensions, elastic moduli, and turgor pressures of sequential internodal cells of intact Chara corallina plants by direct measurement. The results show that turgor pressure predictions based on loss of stability theory fall within the expected physiological range of turgor pressures for this plant. We also studied the effect of varying wall Poisson's ratio nu on extension growth in living cells, showing that while increasing elastic modulus has an understandably negative effect on wall expansion, increasing Poisson's ratio would be expected to accelerate wall expansion.  相似文献   

11.
Cosgrove DJ 《Plant physiology》1981,68(6):1439-1446
The physical analysis of plant cell enlargment is extended to show the dependence of turgor pressure and growth rate under steady-state conditions on the parameters which govern cell wall extension and water transport in growing cells and tissues, and to show the dynamic responses of turgor and growth rate to instantaneous changes in one of these parameters. The analysis is based on the fact that growth requires simultaneous water uptake and irreversible wall expansion. It shows that when a growing cell is perturbed from its steady-state growth rate, it will approach the steady-state rate with exponential kinetics. The half-time of the transient adjustment depends on the biophysical parameters governing both water transport and irreversible wall expansion. When wall extensibility is small compared to hydraulic conductance, the growth rate is controlled by the yielding properties of the cell wall, while the half-time for changes in growth rate is controlled by the water transport parameters. The reverse situation occurs when hydraulic conductance is lower than wall extensibility. The analysis also shows explicitly that turgor pressure is tightly coupled with growth rate when growth is controlled by both water transport and wall yielding parameters.  相似文献   

12.
13.
Cell wall alterations in the arabidopsis emb30 mutant   总被引:8,自引:0,他引:8       下载免费PDF全文
Shevell DE  Kunkel T  Chua NH 《The Plant cell》2000,12(11):2047-2060
The Arabidopsis EMB30 gene is essential for controlling the polarity of cell growth and for normal cell adhesion during seedling development. In this article, we show that emb30 mutations also affect the growth of undifferentiated plant cells and adult tissues. EMB30 possesses a Sec7 domain and, based on similarities to other proteins, presumably functions in the secretory pathway. The plant cell wall depends on the secretory pathway to deliver its complex polysaccharides. We show that emb30 mutants have a cell wall defect that sometimes allows material to be deposited into the interstitial space between cells instead of being restricted to cell corners. In addition, pectin, a complex polysaccharide important for cell adhesion, appears to be abnormally localized in emb30 plants. In contrast, localization of epitopes associated with xyloglucan or arabinogalactan was similar in wild-type and emb30 tissues, and the localization of a marker molecule to vacuoles appeared normal. Therefore, emb30 mutations do not cause a general defect in the secretory pathway. Together, these results suggest that emb30 mutations result in an abnormal cell wall, which in turn may account for the defects in cell adhesion and polar cell growth control observed in the mutants.  相似文献   

14.
The architecture of the plant cell wall is highly dynamic, being substantially re‐modeled during growth and development. Cell walls determine the size and shape of cells and contribute to the functional specialization of tissues and organs. Beyond the physiological dynamics, the wall structure undergoes changes upon biotic or abiotic stresses. In this review several cell wall traits, mainly related to pectin, one of the major matrix components, will be discussed in relation to plant development, immunity and industrial bioconversion of biomass, especially for energy production. Plant cell walls are a source of oligosaccharide fragments with a signaling function for both development and immunity. Sensing cell wall damage, sometimes through the perception of released damage‐associated molecular patterns (DAMPs), is crucial for some developmental and immunity responses. Methodological advances that are expected to deepen our knowledge of cell wall (CW) biology will also be presented.  相似文献   

15.
Plant secondary growth is of tremendous importance, not only for plant growth and development but also for economic usefulness. Secondary tissues such as xylem and phloem are the conducting tissues in plant vascular systems, essentially for water and nutrient transport, respectively. On the other hand, products of plant secondary growth are important raw materials and renewable sources of energy. Although advances have been recently made towards describing molecular mechanisms that regulate secondary growth, the genetic control for this process is not yet fully understood. Secondary cell wall formation in plants shares some common mechanisms with other plant secondary growth processes. Thus, studies on the secondary cell wall formation using Arabidopsis may help to understand the regulatory mechanisms for plant secondary growth. We previously reported phenotypic characterizations of an Arabidopsis semi-dominant mutant, upright rosette (uro), which is defective in secondary cell wall growth and has an unusually soft stem. Here, we show that lignification in the secondary cell wall in uro is aberrant by analyzing hypocotyl and stem. We also show genome-wide expression profiles of uro seedlings, using the Affymetrix GeneChip that contains approximately 24 000 Arabidopsis genes. Genes identified with altered expression levels include those that function in plant hormone biosynthesis and signaling, cell division and plant secondary tissue growth. These results provide useful information for further characterizations of the regulatory network in plant secondary cell wall formation.  相似文献   

16.
In diffuse growing cells the orientation of cellulose fibrils determines mechanical anisotropy in the cell wall and hence also the direction of plant and organ growth. This paper reports on the mean or net orientation of cellulose fibrils in the outer epidermal wall of the whole Arabidopsis plant. This outer epidermal wall is considered as the growth-limiting boundary between plant and environment. In the root a net transverse orientation of the cellulose fibrils occurs in the elongation zone, while net random and longitudinal orientations are found in subsequent older parts of the differentiation zone. The position and the size of the transverse zone is related with root growth rate. In the shoot the net orientation of cellulose fibrils is transverse in the elongating apical part of the hypocotyl, and longitudinal in the fully elongated basal part. Leaf primordia and very young leaves have a transverse orientation. Throughout further development the leaf epidermis builds a very complex pattern of cells with a random orientation and cells with a transverse or a longitudinal orientation of the cellulose fibrils. The patterns of net cellulose orientation correlate well with the cylindrical growth of roots and shoots and with the typical planar growth of the leaf blade. On both the shoot and the root surface very specific patterns of cellulose orientation occur at sites of specific cell differentiation: trichome-socket cells complexes on the shoot and root hairs on the root.  相似文献   

17.
Colonization of host cells by rhizobium bacteria involves the progressive remodelling of the plant–microbial interface. Following induction of nodulation genes by legume-derived flavonoid signals, rhizobium secretes Nod-factors (lipochitin oligosaccharides) that cause root hair deformations by perturbing the growth of the plant cell wall. The infection thread arises as a tubular ingrowth bounded by plant cell wall. This serves as a conduit for colonizing bacterial cells that grow and divide in its lumen. The transcellular orientation of thread growth is controlled by the cytoskeleton and is coupled to cell cycle reactivation and cell division processes. In response to rhizobium infection, host cells synthesize several new components (early nodulins) that modify the properties of the cell wall and extracellular matrix. Root nodule extensins are a legume-specific family of hydroxyproline-rich glycoproteins targeted into the lumen of the infection thread. They have alternating extensin and arabinogalactan (AGP) glycosylation motifs. The structural characteristics of these glycoproteins suggest that they may serve to regulate fluid-to-solid transitions in the extracellular matrix. Extensibility of the infection thread is apparently controlled by peroxide-driven protein cross-linking and perhaps also by modification of the pectic matrix. Endocytosis of rhizobia from unwalled infection droplets into the host cell cytoplasm depends on physical contact between glycocalyx components of the plant and bacterial membrane surfaces. As endosymbionts, bacteroids remain enclosed within a plant-derived membrane that is topologically equivalent to the plasma membrane. This membrane acquires specialist functions that regulate metabolite exchanges between bacterial cells and the host cytoplasm. Ultimately, however, the fate of the symbiosome is to become a lysosome, causing the eventual senescence of the symbiotic interaction.  相似文献   

18.
Cell expansion in roots   总被引:7,自引:0,他引:7  
Cell expansion in roots is crucial for the exploration and exploitation of the soil substrate and the plethora of activities that roots engage in. Expansion requires the coordinated activities of many cell processes. Central to this is the control of ion transport during vacuolar growth, which mediates the increase in cell size and the concomitant production of new wall and membrane at the surface of growing cells. The cytoskeleton plays an important role in growth and the control of growth direction. Evidence is accumulating to show that plant hormones also coordinate cell expansion throughout the plant by controlling the activities of growth-regulating DELLA proteins.  相似文献   

19.
Mechanical modeling and structural analysis of the primary plant cell wall   总被引:1,自引:0,他引:1  
Plant cell growth is a fundamental process during plant development whose spatial and temporal dynamics are controlled by the cell wall. Modeling mechanical aspects of cell growth therefore requires the integration of structural cell wall details with quantitative biophysical parameters. Recent advances in microscopic techniques and mechanical modeling have made significant contributions to the field of cell wall biomechanics. Live observation of cellulose microfibrils at high z-resolution now enables determining the dynamic orientation of these polymers in the different wall layers of growing cells. Mechanical modeling approaches have been developed to operate at the scale of individual molecules and will thus be able to exploit the availability of the high-resolution structural data. The combination of these techniques has the potential to make a significant and quantitative contribution to our understanding of plant growth and development.  相似文献   

20.
This study addresses the mechanism of wall stress relaxation in growing plant cells. The current viscoelastic model of cell wall relaxation, which dates from the work of Preston, Cleland, Lockhart, and others in the 1960s, has serious shortcomings. It has been shown however that the theory of loss of stability (LOS) can be applied to materials in tension, leading to the conclusion that the relaxation of stresses in the walls of any pressure vessel is rigorously modeled using LOS. We propose that LOS also provides a more appropriate and versatile model of stress relaxation in growing plant cells. We argue that when treated as a manifestation of LOS, the regulation of cell turgor has a rigorous and demonstrable basis in the geometrical and physical properties of the cell wall and the cell's ability to import water. Thus plant cell growth can be regarded as an inherently self-limiting process, tunable by biochemical or structural means. Lastly, despite the current limitations of our model, we apply direct measurement of elastic modulus, wall thickness and cell radius obtained from cylindrical Chara corallina cells to generate an initial calculation of critical pressures in a hypothetical spherical cell with the same material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号