首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zwittermicin A is a novel antibiotic produced by Bacillus cereus UW85, which suppresses certain plant diseases in the laboratory and in the field. We developed a rapid method for large-scale purification of zwittermicin A and then studied the in vitro activity of zwittermicin A against bacteria, fungi, and protists. Zwittermicin A was highly active against the Oomycetes and their relatives, the algal protists, and had moderate activity against diverse Gram-negative bacteria and certain Gram-positive bacteria as well as against a wide range of plant pathogenic fungi. Zwittermicin A was more active against bacteria and fungi at pH 7–8 than at pH 5–6. When zwittermicin A was combined with kanosamine, another antibiotic produced by B. cereus, the two acted synergistically against Escherichia coli and additively against Phytophthora medicaginis, an Oomycete. The results indicate that there are diverse potential applications of this new class of antibiotic. Received: 1 December 1997 / Accepted: 9 January 1998  相似文献   

2.
为开发利用珊瑚真菌资源,以徐闻珊瑚保护区珊瑚样品中分离鉴定的43株海洋真菌为研究对象,采用双层平板法和Ellman法分别对其进行抗菌和乙酰胆碱酯酶(AChE)抑制活性筛选。结果显示,43株菌株至少对一种指示菌有抑制作用,且有12株菌株对革兰阳性菌和革兰阴性菌均表现出不同程度的抗菌活性,抗菌谱较广;当浓度为1 mg/mL时,有8株菌株的发酵液提取物对乙酰胆碱酯酶的抑制率达到50%以上。其活性菌株中曲霉属(Aspergillus)为优势属。  相似文献   

3.
Aims: Assessment of antimicrobial activity of the mycoparasite Coniothyrium minitans and its macrolide antibiotic macrosphelide A. Methods and Results: Thirteen isolates of C. minitans were tested for ability to inhibit a number of filamentous fungi, yeasts, oomycetes and bacteria in agar based tests. Activity was found against some ascomycetes, basidiomycetes, oomycetes and Gram‐positive bacteria, but not against zygomycetes, yeasts or Gram‐negative bacteria tested. Six C. minitans isolates (Conio, Contans, IVT1, CM/AP/3118, B279/1, A1/327/1) were found to produce macrosphelide A in liquid culture and no other antibiotics were detected. On agar, macrosphelide A inhibited growth of some ascomycetes, basidiomycetes, oomycetes and all four Gram‐positive bacteria tested, including the medically important Staphylococcus aureus with a minimum inhibitory concentration of ≤500 μg ml?1. There was no inhibition observed against the yeasts and Gram‐negative bacteria when macrosphelide A was tested at 700 μg ml?1. Conclusions: The spectrum and level of activity of macrosphelide A produced by C. minitans against micro‐organisms are extended markedly compared to previous reports. Significance and Impact of the Study: Macrosphelide A was effective against Staph. aureus. Further study on the control of this bacterium is merited in view of the development of antibiotic resistance.  相似文献   

4.
The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Peter Fedors 《Mycopathologia》1959,11(1-2):128-134
Summary It was accidentally discovered thatPseudomonas aeruginosa inhibited the growth ofHistoplasma capsulatum when both of the organisms were isolated from a series of sputum specimens obtained from a single patient. Experiments were performed to determine if there is any inhibitory effect on other systemic fungi.Three fractions were obtained from a broth culture ofP. aeruginosa and their antibiotic effects tested against various systemic fungi and bacteria.Reviewed in the Veterans Administration and published with the approval of the Chief Medical Director. The statements and conclusions published by the author are the results of his own study and do not necessarily reflect the opinion of the Veterans Administration.  相似文献   

6.
In this study, in vitro antimicrobial activity of the physodic acid, usnic acid, atranorin and gyrophoric acid isolated from the lichens Hypogymnia physodes, Parmelia caperata, Physcia aipolia and Umbilicaria polyphylla, has been investigated. An antibiotic assessment was done against six bacteria (three Gram-positive and three Gram-negative) and eight fungi by determining the minimal inhibitory concentration (MIC) by the broth tube dilution method. The tested lichen substances inhibited growth of all the tested microorganisms. The bacteria showed a higher sensitivity against the tested fungi. The highest antimicrobial activity was found in the usnic acid of the Parmelia caperata lichen, where the lowest MIC was 0.0037 mg/ml against the Klebsiella pneumoniae (even lower than the one given by the streptomycin standard). The weakest antimicrobial activity was found in the physodic acid, which inhibited most of the microorganisms in the concentration of 1 mg/ml. Generally, all the components had relatively strong antimicrobial activity against the tested microorganisms, among which were human and animal pathogens. This could be of significance for their use for pharmaceutical purposes.  相似文献   

7.
Summary A new antibiotic, gluconimycin, was isolated from Streptomyces AS 9. The systematic position of the organism is discussed. Gluconimycin has a polypeptide nature. It contains iron and gluconic acid in its molecule. Thus it has been classified as a member of sideromycins. Gluconimycin is considered from the fast moving type when chromatographed by butanolacetic acid-water. The antibiotic is active against Gram+ve, Gram-ve bacteria and some fungi. The antibiotic exerts high toxicity when injected in mice.  相似文献   

8.
Transformation of the taxol-producing filamentous fungusPestalotiopsis microsporawith a plasmid containing the bacterial hygromycin resistance gene fused toAspergillusregulatory sequences resulted in thein vivoformation of extrachromosomal DNAs with telomeric repeats in the majority of transformants. Repeats of the telomeric sequence 5′-TTAGGG-3′ were appended to nontelomeric transforming DNA termini. No fungal sequences other than telomeric repeats were detected in extrachromosomal DNAs. Transformants contained three to six different sizes or conformational forms of extrachromosomal DNAs. The DNAs showed no change in size or internal structure during 6 months of growth with selection, but were lost after 20 days of growth without selection. Transformation of wild-typeP. microsporawith a PCR-amplified extrachromosomal DNA having terminal telomeric repeats produced up to 50-fold more transformants than the original transformation vector. The addition of telomeric repeats to foreign DNA is unusual among fungi and may have important adaptive or developmental implications.  相似文献   

9.
A bacterial strain, SCE2, identified as Bacillus polymyxa, produced an anti-microbial substance active against yeasts, fungi and different genera of Gram-positive and-negative bacteria, in liquid medium and in plate assays. This substance appeared to be an antibiotic different from the polymyxin group, mainly because of its action against the majority of Gram-positive bacteria tested and its lack of activity against Pseudomonas aeruginosa, a species usually killed by polymyxins. Preliminary characterization showed resistance to heat (65°C, 2 h), to proteases, trypsin, lysozyme, deoxyribonuclease I, ribonuclease A, phospholipase C, ethanol, acetone, chloroform, ether and to strong alkali treatment (2 M NaOH). The molecular weight was less than 3500. The B. polymyxa strain harboured a plasmid that did not correlate with antibiotic production; after curing experiments, a derivative strain, SCE2(46), was isolated that lacked the plasmid pES1, but showed the same inhibitory spectrum as the wild-type strain.  相似文献   

10.
Fifty–seven fungi and 59 bacteria were isolated from soils collected from two apple orchards located in Kelowna and Summerland, British Columbia, Canada. Sixteen fungi and 35 bacteria, respectively, were significantly inhibited by the biological control agent Enterobacter aerogeness in a dual culture test. These results indicate that the antibiotic(s) produced by this organism has a wide spectrum of activity. This ability of E. aerogenes may protect apple trees from infection by other, soil microorganisms.  相似文献   

11.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

12.
The anti-cancer drug taxol binds to β-tubulin in assembled microtubules and causes cell cycle arrest in animal cells; in contrast, in fungi, the effect of taxol varies. For instance, the taxol-producer Pestalotiopsis microspora Ne32, an ascomycete, is resistant to taxol (IC50 greater than 11.7 μM), whereas Pythium ultimum, an oomycete, is sensitive to taxol (IC50 0.1 μM). In order to understand the differential fungal response to taxol, we isolated cDNAs encoding β-tubulin from both P. microspora and P. ultimum. The deduced amino acid sequence of β-tubulin from P. microspora is very similar to those from other Ascomycetes, many of which are resistant to taxol. The sequence of β-tubulin from P. ultimum is very similar to those from Oomycetes and non-fungal organisms, many of which are sensitive to taxol. To examine the interaction between taxol and fungal microtubules, binding studies were performed with fungal cells, using [3H]taxol. The labeled taxol was found to bind specifically to P. ultimum, but not to P. microspora. In addition, the amount of [3H]taxol specifically bound to P. ultimum was reduced by the microtubule-depolymerizing drug thiabendazole, in a dose-dependent manner. These results suggest efficient binding of taxol to microtubules in P. ultimum, but not in P. microspora, and are consistent with the differential taxol sensitivity of these two organisms. Finally a comparison of previously characterized taxol binding sites in various β-tubulin sequences showed that β-tubulins of taxol-sensitive organisms, including P. ultimum, contain Thr219, but β-tubulins of resistant organisms, including P. microspora, contain Asn or Gln at this position, suggesting an important role for residue 219 in the interaction between taxol and β-tubulin. Received: 16 March 1999 / Accepted: 21 August 1999  相似文献   

13.
Abstract

In the present work the results on antibiotic activity of the extracts from the liverwort Conocephalum conicum and the mosses Minium undulatum and Leptodictyum riparium, tested against 8 bacterial strains pathogenic to man, are referred to. The extracts have been obtained, according the method suggested by McCleary et al. (1960), in either organic solvents or in water solution. The extracts have been proved active on both bacteria Gram + ve (G +) and Gram—ve (G—), in addition the extracts from Conocephalum conicum and Leptodictyum riparium (extracts in organic solvents in particular) were the most effective in the tests. The acetone extracts from Leptodictyum riparium showed the highest value of inhibition against Pseudomonas aeruginosa (bacterium responsible for serious opportunist infections). Our results on antibiotic activity of Bryophytes only partly agree with literature for either species showing activity or for the intensity of such activity. Among the three bryophytes employed Leptodictyum riparium showed the best inhibitory power against all bacteria tested. This result seems particularly interesting in relation to the possible competition between species occurring in the water where this moss preferentially grows. The phenomenon of antibiosis in the bryophytes is discussed also in relation to symbiotic or commensal relationships existing with soil bacteria and/or fungi.  相似文献   

14.
Bean rhizosphere bacteria antagonistic to four root-infecting fungi and an antibiotic produced by these bacteria were studied. The bacteria were violet-pigmented gram-negative rods, probably belonging to the genus Pseudomonas. The antibiotic, which was localized largely in the bacterial cell mass, was easily extracted with acetone. It was selectively active against a wide variety of plant-pathogenic and saprophytic fungi tested in vitro but was relatively inactive against bacteria. The compound, partially purified by chromatography, was soluble in all organic solvents tried, but nearly insoluble in water. It demonstrated no characteristic ultraviolet- or visible-absorption spectrum and was chemically unidentified. The antagonistic bacteria or crude antibiotic applied to buried buckwheat segments suppressed the colonization of this substrate by Rhizoctonia spp. The data suggested that the bacteria or the antibiotic may play a role in the suppression of root-infecting fungi in soil.  相似文献   

15.
A non-polyene antifungal antibiotic fromStreptomyces albidoflavus PU 23   总被引:1,自引:0,他引:1  
In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain,Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate.Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic  相似文献   

16.
The in vitro antimierobial activity of root oil of C. orchioides were studied against human pathogenic bacteria and phytopathogenic fungi by comparing the results with standard microbial susceptibility testing biodises. The oil of C. orchioides in case of bacteria shows significant activity against Bacillus anthracis, B. subtilis, Salmonella pullorum, S. newport, and Staph. aureus. While in case of fungi root oil had excellent activity against Fusarium monili forme, F. solani, Asprgullus flavus and Cladosporium and shows significant activity against all other tested fungi.  相似文献   

17.
An antibiotic-producing actinomycete was isolated from Nigerian soil and assigned to the genusStreptomyces. The antibiotic had antimicrobial activity on solid agar against both Gram-positive and Gram-negative bacteria as well as fungi.
Résumé On a isolé un actinomycète producteur d'antibiotique d'un sol Nigérian et on lui a assigné le genreStreptomyces. L'antibiotique avait une activité antimicrobienne sur agar solide tant contre les bactéries gram-positives et les bactéries Gram-négatives que les fungi.
  相似文献   

18.
Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.  相似文献   

19.
Study of living hyphae of Fusarium oxysporum Schlect., Fomes annosus (Fries) Cooke, Ceratocystis fagacearum (Bretz) Hunt, Basidiobolus ranarum Eidam, and Mycotypha microspora Fenner with phase contrast revealed that these fungi have spherosomes similar to those in vascular plants. The spherosomes are conspicuous in the hyphal tip, suggesting some function other than fat synthesis. It may be that the Woronin bodies reported by other workers are spherosomes. Mitochondria in these fungi are highly pleomorphic and exhibit saltatory movement. They often interact with nuclei in a manner suggesting close membrane contact.  相似文献   

20.
Endophytic filamentous fungi from coffee plants (Coffea arabica and C. robusta) deposited in the Brazilian Collection of Environmental and Industrial Microorganisms (CBMAI) were characterized taxonomically by using molecular tools and investigated concerning their antimicrobial activity against different human pathogenic bacteria. Thirty-seven out of 39 CBMAI strains investigated were identified to at least at genus level by ITS and rDNA D1/D2 sequencing and phylogenetic analyses. Bioactivity screening of fungal extracts against Salmonella choleraesuis (CBMAI 484), Staphylococcus aureus (CBMAI 485), Pseudomonas aeruginosa (CBMAI 489) and against four different Escherichia coli serotypes showed that 17 fungi inhibited at least one of the bacteria studied. The endophytic fungi Trichoderma harzianum (CBMAI 43), Guignardia sp. (CBMAI 69) and Phomopsis sp. (CBMAI 164) inhibited from four to five bacterial species, while five fungi were active against all pathogenic bacteria tested and were identified as Aspergillus versicolor (CBMAI 46), Fusarium oxysporum (CBMAI 53), Glomerella sp. (CBMAI 63) and Cladosporium spp. (CBMAI 64 and CBMAI 66). The Minimal Inhibitory Concentration (MIC) for the fungus extracts varied from 0.025 to 1.0 mg ml−1, demonstrating antimicrobial potential of some of these fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号