首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of vesicular-arbuscular mycorrhiza (VAM) on the growth and phosphorus uptake of cocoa seedlings (Theobroma cacao L.) grown for 100 days in polythene bags, were studied at five levels of phosphorus fertilization in both steamed and unsterile Bungor Series soil (a fine clayey, kaolinitic isohyperthermic Typic Paleudult). The cocoa seedlings responded well to phosphorus fertilization and mycorrhizal treatments. Plants inoculated with VAM fungi (Gigaspora spp.) gave the most vigorous growth and higher phosphorus in the leaf tissues in unsterile soil compared to plants grown in steamed soil. However, the mycorrhizal effect was significantly more pronounced (P<0.01) in plants grown in steamed than in unsterile soil. High levels of phosphorus application depressed mycorrhizal development. Phosphorus fertilizer applied at the rates of 250 and 500 ug g−1 soil gave maximum root colonization and spore counts in both soil types used.  相似文献   

2.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

3.
Inoculation of finger millet (Eleusine coracana Gaertn.) plants with one of six different vesicular, arbuscular, mycorrhizal (VAM) fungi increased plant biomass, height, leaf area and absolute growth rate; however, effectiveness of the various VAM fungi varied significantly. Maximum root colonization and mycorrhizal efficacy was observed with plants inoculated with Glomus caledonicum. Among five host genotypes tested for mycorrhizal dependency against G. caledonicum, genotype HR-374 gave the highest plant biomass, mycorrhizal efficacy and root colonization, the inoculation resulting in increased mineral (phosphate, nitrogen, Zn2+ and Cu2+) content and uptake in shoots.  相似文献   

4.
The effect of P applications and mycorrhizal inoculation on the growth and P nutrition of Anthyllis cytisoides L. (Fabaceae) and Brachypodium retusum (Pers.) Beauv. (Poaceae) was studied. Both plants are widely distributed and well adapted to semi-arid habitats in southern Spain. In all treatments, even with high P doses, mycorrhizal plants showed a higher concentration of phosphorus in their tissues than non-mycorrhizal plants. Mycorrhizal inoculation enhanced the growth of the plants when no P was applied. At high P addition, non-mycorrhizal plants showed higher growth than mycorrhizal plants. The response of each plant type to P application was somewhat different.  相似文献   

5.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

6.
The purpose of this study was to analyze morphological and physiological aspects of Arbutus unedo L. plants treated with paclobutrazol (PAC), compounds characterized by their double activity as plant growth regulators and fungicides, and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch, which forms a special type of mycorrhizal colonization called arbutoid mycorrhiza. Native A. unedo L. seedlings were grown in a greenhouse and subjected to four treatments for 4 months: 0 or 60 mg of PAC and inoculated or not with P. tinctorius (Pers.). The arbutoid mycorrhizal inoculation increased in plants treated with PAC. Paclobutrazol reduced shoot and root biomass, plant height, internode length, stem diameter, leaf area, total root length and number of tips. P. tinctorius increased plant height and had a beneficial effect on the root system (increasing root diameter and the number of tips). PAC treatment led to an increase in ion levels in the leaf tissue, while mycorrhizal inoculation induced lower K and higher P contents in the roots. Leaf water potentials (at predawn and at midday) increased with the combined treatment. The absence of water deficit conditions meant there was no osmotic adjustment. Higher photosynthesis (Pn) values were associated with higher stomatal conductance (gs) values in the mycorrhizal plants, which influenced water uptake from the roots. However, gs decreased in the PAC-treated plants, reducing photosynthesis and, as a consequence, growth. The higher hydraulic conductivity (Lp) in the plants treated with PAC may have induced a better water energy status and good water transport. The combined treatment produced beneficial effects in the plants, improving their water and nutritional status.  相似文献   

7.
The effects of the interaction between Pratylenchus vulnus and the endomycorrhizal fungus Glomus intraradices on growth and nutrition of Santa Lucia 64 cherry rootstock was studied under microplot conditions during one growing season. Fresh top weight, and stem diameter of mycorrhizal plants and high P treatments with and without P. vulnus were significantly higher than those of non-mycorrhizal plants. The lowest shoot length and fresh root weights were recorded in nematode inoculated plants in low P soil. Mycorrhizal infection did not affect the number of nematodes per gram of root in plants infected with P. vulnus. In the presence of the nematode, internal spore production by G. intraradices was significantly reduced. No nutrient deficiencies were detected through foliar analysis, although low levels of Ca, Mn and Fe were detected in nematode treatments. Mycorrhizal plants achieved the highest values for N, P, S, Fe, and Zn, whereas high P treatments increased absorption of Ca and Mn. Early mycorrhizal infection of Santa Lucia 64 cherry rootstock by G. intraradices confers increased growth capacity in the presence of P. vulnus.  相似文献   

8.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

9.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

10.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

11.
The interactions between the mycorrhizal fungusGlomus mosseae, the plant pathogenPythium ultimum, and a pathogen-antagonistTrichoderma aureoviride in the rhizosphere ofTagetes erecta (marigold) were studied for their effects on plant growth in a peat-perlite substrate. Mycorrhizal fungus inoculation protected the plant againstP. ultimum, since both phytomass production and foliar development were higher in mycorrhizal plants.T. aureoviride had no effect on nonmycorrhizal plants in the presence or absence ofP. ultimum. However, more biomass was produced by mycorrhizal plants whenT. aureoviride was present, whether or not soil was infested withP. ultimum. ei]R Rodriguez-Kabana  相似文献   

12.
The interaction of a vesicular-arbuscular mycorrhizal fungusGlomus fasciculatum with a wilt-causing soil borne pathogen,Fusarium oxysporum, was studied in cowpea (Vigna unguiculata). It was found that pre-establishment by vesicular-arbuscular mycorrhizal fungus reduced the colonization of the pathogen and the severity of the disease, as determined by reduction in vascular discolouration index. In mycorrhizal plants, the production of phytoalexin compounds was always higher than in the nonmycorrhizal plants. There appeared to be a direct correlation between the concentration of the phytoalexins and the degree of mycorrhizal association. Three different compounds withR f values of 0.23 (I), 0.17 (II) and 0.11 (III) were obtained from mycorrhizal plants. Similar compounds were also found to be induced by an abiotic elicitor CuSO4. The first compound was identified as an isoflavonoid, daidzein and the other two remain to be identified. These compounds were checked for their antifungal activityin vitro. The germination of conidial spores ofFusarium oxysporum was strongly inhibited by the compound III than the other two. It is argued that the production of phytoalexin compounds in mycorrhizal plant could be one of the mechanisms imparting tolerance of the plants to wilt disease.  相似文献   

13.
The effects of Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on growth of Myrobalan 605, Marianna 2624 and San Julian 655-2 plum rootstocks were measured under shadehouse conditions in the field for two growing seasons (1990–91). Shoot dry weights were higher in the majority of the vesicular-arbuscular mycorrhizal (VAM) alone inoculated plants after both growing seasons. Root weights of mycorrhizal Myrobalan and Marianna were higher than root weights of the same rootstocks lacking mycorrhizae, inoculated with P. vulnus, and VAM in combination with the nematode. Mycorrhizal Marianna inoculated with the nematode showed a considerably higher final nematode population in relation to non-inoculated VAM treatments. No correlation was found in the number of nematodes per gram of root between mycorrhizal and non-mycorrhizal treatments. P. vulnus adversely affected the mycorrhizal colonization in Marianna, but not in Myrobalan and San Julian. Marianna appears to be more mycorrhizal dependent than the two other rootstocks.  相似文献   

14.
Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani   总被引:1,自引:0,他引:1  
Mycorrhiza frequently leads to the control of root pathogens, but appears to have the opposite effect on leaf pathogens. In this study, we studied mycorrhizal effects on the development of early blight in tomato (Solanum lycopersicum) caused by the necrotrophic fungus Alternaria solani. Alternaria-induced necrosis and chlorosis of all leaves were studied in mycorrhizal and non-mycorrhizal plants over time course and at different soil P levels. Mycorrhizal tomato plants had significantly less A. solani symptoms than non-mycorrhizal plants, but neither plant growth nor phosphate uptake was enhanced by mycorrhizas. An increased P supply had no effect on disease severity in non-mycorrhizal plants, but led to a higher disease severity in mycorrhizal plants. This was parallel to a P-supply-induced reduction in mycorrhiza formation. The protective effect of mycorrhizas towards development of A. solani has some parallels to induced systemic resistance, mediated by rhizobacteria: both biocontrol agents are root-associated organisms and both are effective against necrotrophic pathogens. The possible mechanisms involved are discussed.  相似文献   

15.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

16.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

17.
Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or °Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (°Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth.  相似文献   

18.
Distribution of VA mycorrhiza on halophytes on inland salt playas   总被引:5,自引:0,他引:5  
The value of mycorrhizal association for higher plants has been well established. However, the impact of high salinity on the mycorrhizal relationship has not been investigated to any great extent. Inland salt playas represent an opportunity to test the impact of salinity because it is possible to obtain a gradient by following a transect from the centre of the salt playa to the higher outer zones. In a salt playa near Goshen, Utah, the sodium concentration ranged from 27,150 ppm in the centre to 25 ppm in the outer zone. In the playas with sodium concentrations of 20,000 ppm, no mycorrhiza were detected on the halophytes and no spores of mycorrhizal fungi were found in the soil. One percent of the roots of salt grass in soils containing 8,450 ppm of sodium were mycorrhizal. In soils containing 622 ppm of 45 percent of the roots of a salt-tolerant grass (hybrid ofAgropyron repens × Agropyron spicatum) were mycorrhizal. Halophytes such asSalicornia pacifica var.utahensis which are among the most salt tolerant halophytes of the inland salt playas rarely had mycorrhizal roots. The mycorrhizal associations appear to be very limited in inland salt playas with sodium content.  相似文献   

19.
Interactions between the mycorrhizal fungus Glomus monosporum and the root rot pathogen Thielaviopsis basicola and their effects on tobacco plants were investigated over a 4 week period. Mycorrhizal tobacco plants, obtained by preinoculation with G. monosporum, showed a better tolerance to T. basicola than non-mycorrhizal seedlings. Root and leaf dry weights of mycorrhizal plants were greater than those of controls. Mycorrhizal plants inoculated with T. basicola showed higher root and leaf dry weights than non-mycorrhizal infected plants, but lower values than mycorrhizal plants which were not infected. No appreciable differences in free aminoacid composition were observed among the different treatments with two exceptions: proline content was higher in infected and mycorrhizal infected plants compared to control and mycorrhizal plants; arginine content was higher in infected and mycorrhizal infected plants compared to control and mycorrhizal plants; arginine content was higher in mycorrhizal plants than in all the other treatments. The mechanisms by which (VAM) fungi can reduce disease incidence and pathogen development are discussed.  相似文献   

20.
The effect of mycorrhizal inoculation on 15N transfer from soybean to maize was studied in fumigated and non-fumigated soil. Three Glomus species and a non-inoculated control were compared.In spite of higher levels of root colonization and more abundant hyphae associated with plants growing in fumigated soil, mycorrhizae-enhanced 15N transfer to maize was significant only in non-fumigated plots. High 15N transfer was not only associated with high mycelium density in soil but also with low soil microbial carbon, suggesting that the effect of mycorrhizal fungi on soil microbial populations may be an important factor affecting N transfer between mycorrhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号