共查询到20条相似文献,搜索用时 15 毫秒
1.
Van Craenenbroeck K Borroto-Escuela DO Romero-Fernandez W Skieterska K Rondou P Lintermans B Vanhoenacker P Fuxe K Ciruela F Haegeman G 《The FEBS journal》2011,278(8):1333-1344
Dopamine D(4) receptors (D(4) Rs) are G protein-coupled receptors that play a role in attention and cognition. In the present study, we investigated the dimerization properties of this receptor. Western blot analysis of the human D(4.2)R, D(4.4)R and D(4.7)R revealed the presence of higher molecular weight immunoreactive bands, which might indicate the formation of receptor dimers and multimers. Homo- and heterodimerization of the receptors was confirmed by co-immunoprecipitation and bioluminescence resonance energy transfer studies. Although dimerization of a large number of G protein-coupled receptors has been described, the functional importance often remains to be elucidated. Folding efficiency is rate-limiting for D(4)R biogenesis and quality control in the endoplasmic reticulum plays an important role for D(4)R maturation. Co-immunoprecipitation and immunofluorescence microscopy studies using wild-type and a nonfunctional D(4.4)R folding mutant show that oligomerization occurs in the endoplasmic reticulum and that this plays a role in the biogenesis and cell surface targeting of the D(4)R. The different polymorphic repeat variants of the D(4)R display differential sensitivity to the chaperone effect. In the present study, we show that this is also reflected by bioluminescence resonance energy transfer saturation assays, suggesting that the polymorphic repeat variants have different relative affinities to form homo- and heterodimers. In summary, we conclude that D(4)Rs form oligomers with different affinities and that dimerization plays a role in receptor biogenesis. 相似文献
2.
3.
Fabrizio Sanna Birgit Ortner Harald Hübner Stefan Löber Nuska Tschammer Peter Gmeiner 《Bioorganic & medicinal chemistry》2013,21(7):1680-1684
Employing the D4 selective phenylpiperazine 2 as a lead compound, planar chiral analogs with paracyclophane substructure were synthesized and evaluated for their ability to bind and activate dopamine receptors. The study revealed that the introduction of a [2.2]paracyclophane moiety is tolerated by dopamine receptors of the D2 family. Subtype selectivity for D4 and ligand efficacy depend on the absolute configuration of the test compounds. Whereas the achiral single-layered lead 2 and the double-layered paracyclophane (R)-3 showed partial agonist properties, the enantiomer (S)-3 behaved as a neutral antagonist. 相似文献
4.
《Bioorganic & medicinal chemistry》2014,22(12):3105-3114
The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted. 相似文献
5.
《Journal of receptor and signal transduction research》2013,33(5):331-336
The human D4 dopamine receptor is a synaptic neurotransmitter receptor responsible for neuronal signaling in the mesolimbic system of the brain, an area of the brain that regulates emotion and complex behavior. Its structure makes it a very unusual and interesting G protein-coupled receptor (GPCR) as it has several polymorphic variants of its gene in the region encoding the third intracellular loop (IL3). This region contains from two to seven or more similar 48 base pair repeats. These repeats cause this protein to have a very high disorder index and this, in turn, makes it very interactive with other proteins. Among GPCRs in general, the unusually proline-rich IL3 is unique to the D4 receptor (D4R). We believe that, as in the D2R, this region of the receptor plays a role in it’s interaction with other receptors. 相似文献
6.
Sahlholm K Marcellino D Nilsson J Fuxe K Arhem P 《Biochemical and biophysical research communications》2008,377(4):1216-1221
Recently, we and others have shown that agonist potencies at some, but not all, G protein-coupled receptors are voltage-sensitive. Several of those studies employed electrophysiology assays in Xenopus oocytes with G protein-coupled potassium channels as a readout. Using this assay, we have now obtained evidence that voltage-sensitivity at the dopamine D2S receptor is agonist-specific. Whereas the potency of dopamine at the D2S receptor is decreased by depolarization, the potencies of β-phenethylamine, p- and m-tyramine are voltage-insensitive. Furthermore, both monohydroxylated and non-hydroxylated N,N-dipropyl-2-aminotetralin compounds are voltage-sensitive. Differential activation of G protein subtypes or differential ratios between effector and active G protein do not underlie this agonist-selective voltage-sensitivity. This is the first demonstration of voltage-sensitive and voltage-insensitive behaviour of different agonists acting via the same receptor. 相似文献
7.
Sugiyama A Inoue-Murayama M Miwa M Ohashi R Kayang BB Mizutani M Nirasawa K Odai M Minezawa M Watanabe S Ito S 《Zoological science》2004,21(9):941-946
In stockbreeding, there are indications that behavioral traits of livestock have an effect on breeding and production. If the variation in individual behavior is related to that in neurotransmitter-related genes such as in humans, it would be possible to breed pedigrees composed of individuals having behavioral traits that are useful to production and breeding using selection based on genotypes. In this study, we investigated the exon I region of dopamine receptor D4 (DRD4), in which variation is related to psychiatric disorder in humans, in major poultry species namely Japanese quail (Coturnix japonica), chicken (Gallus gallus), ring-necked pheasant (Phasianus colchicus) and helmeted guinea fowl (Numida meleagris). Furthermore, we investigated Japanese cormorant (Phalacrocorax capillatus) and Japanese jungle crow (Corvus macrorhynchos) as an out-group. In these species of birds, the repeat of proline was identified in the region corresponding to the human polymorphic region. The repeat number was 9 in Japanese quail, ring-necked pheasant and Japanese cormorant; 12 in helmeted guinea fowl; and 3 in Japanese jungle crow. However, no polymorphism was found in these species. In contrast, polymorphism was observed in chicken and two alleles with 8 and 9 repeats were identified. Although 9 repeats (allele 9) were predominant in most chicken breeds, Black Minorca had only 8 repeats (allele 8). Intra-breed polymorphism was found in 6 out of 12 breeds, and two alleles (alleles 8 and 9) were detected in these breeds. This polymorphism, which is the first to be reported on a neurotransmitter-related gene in birds, would contribute significant information for elucidation of differences in behavioral traits in chicken breeds. 相似文献
8.
Yukihide Momozawa Yukari Takeuchi Ryo Kusunose Takefumi Kikusui Yuji Mori 《Mammalian genome》2005,16(7):538-544
The variable number of tandem repeats (VNTR) polymorphism of the dopamine D4 receptor (DRD4) gene has been reported to be associated with the personality trait of novelty-seeking in humans. In the genus Equus, this region includes an 18-bp repeat unit and there are inter- and intraspecies differences in the number of repetitions. Because horses are unique among livestock species in that their temperament is considered important, we investigated the possible role of this region on equine temperament in thoroughbred horses. We simultaneously determined the sequences of this polymorphic region and administered a questionnaire survey to horse caretakers with questions about 20 different traits of their horses’ temperament. Although there was no difference in the number of repeats among the 136 thoroughbred horses studied, two single nucleotide polymorphisms (SNPs), one of which might cause an amino acid change (A-G substitution), existed. By analyzing the association between these SNPs and temperament scores, a significant association was revealed between two temperament traits (Curiosity and Vigilance) and the A-G substitution. Horses without the A allele had significantly higher Curiosity and lower Vigilance scores than those with the A allele at the A-G substitution. In addition, similar associations between both temperament scores and each genotype of the A-G substitution were observed in two subgroups divided according to the time of their introduction to the farm. These results suggested that the SNP in the VNTR region of the equine DRD4 gene might be related to individual differences in equine temperament. 相似文献
9.
10.
Miho Inoue-Murayama Youko Niimi Osamu Takenaka Yuichi Murayama 《Primates; journal of primatology》2000,41(4):383-392
We examined the tandem repeat sequence of the dopamine receptor D4 (DRD4) gene in 73 individuals derived from 8 species of
gibbons (genusHylobates) in an attempt to assess the variability of this gene in gibbon species.H. syndactylus (subgenusSymphalangus) andH. concolor (subgenusNomascus), which were inferred to have diverged at an early time within the family Hylobatidae, shared only long repeat (7–8) alleles.
On the other hand, DRD4 was highly polymorphic in gibbons of the subgenusHylobates, with 4-, 5-, 6-, 7-, and 8-repeat alleles being recognized. In this subgenus, 4- and 5-repeat alleles were found in the
species distributed mainly in the southern islands such as Sumatra, Java, and Borneo but not in the species inhabiting the
Asian continent. Sequence analysis indicated that the repeat structure of the gibbon DRD4 gene was quite complex but most
of the 48-bp units could be classified into several groups across the species based on sequence similarities. However, the
sequence of the 7-repeat allele ofH. muelleri was unique, since the repeat units had low similarities to other units of gibbons. 相似文献
11.
Anna Dreber Coren L. Apicella Dan T.A. Eisenberg Justin R. Garcia Richard S. Zamore J. Koji Lum Benjamin Campbell 《Evolution and human behavior》2009,30(2):85-92
Individuals exhibit substantial heterogeneity in financial risk aversion. Recent work on twins demonstrated that some variation is influenced by individual heritable differences. Despite this, there has been no study investigating possible genetic loci associated with financial risk taking in healthy individuals. Here, we examined whether there is an association between financial risk preferences, elicited experimentally in a game with real monetary payoffs, and the presence of the 7-repeat allele (7R+) in the dopamine receptor D4 gene as well as the presence of the A1 allele (A1+) in the dopamine receptor D2 gene in 94 young men. Although we found no association between the A1 allele and risk preferences, we did find that 7R+ men are significantly more risk loving than 7R? men. This polymorphism accounts for roughly 20% of the heritable variation in financial risk taking. We suggest that selection for the 7R allele may be for a behavioral phenotype associated with risk taking. This is consistent with previous evolutionary explanations suggesting that selection for this allele was for behaviors associated with migration and male competition, both of which entail an element of risk. 相似文献
12.
Yang Z Asico LD Yu P Wang Z Jones JE Bai RK Sibley DR Felder RA Jose PA 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H55-H61
D(1)-like receptors have been reported to decrease oxidative stress in vascular smooth muscle cells by decreasing phospholipase D (PLD) activity. However, the PLD isoform regulated by D(1)-like receptors (D(1) or D(5)) and whether abnormal regulation of PLD by D(1)-like receptors plays a role in the pathogenesis of hypertension are unknown. The hypothesis that the D(5) receptor is the D(1)-like receptor that inhibits PLD activity and serves to regulate blood pressure was tested using D(5) receptor mutant mice (D(5)(-/-)). We found that in the mouse kidney, PLD2, like the D(5) receptor, is mainly expressed in renal brush-border membranes, whereas PLD1 is mainly expressed in renal vessels with faint staining in brush-border membranes and collecting ducts. Total renal PLD activity is increased in D(5)(-/-) mice relative to congenic D(5) wild-type (D(5)(+/+)) mice. PLD2, but not PLD1, expression is greater in D(5)(-/-) than in D(5)(+/+) mice. The D(5) receptor agonist fenoldopam decreases PLD2, but not PLD1, expression and activity in human embryonic kidney-293 cells heterologously expressing the human D(5) receptor, effects that are blocked by the D(5) receptor antagonist SCH-23390. These studies show that the D(5) receptor regulates PLD2 activity and expression. The hypertension in the D(5)(-/-) mice is associated with increased PLD expression and activity. Impaired D(5) receptor regulation of PLD2 may play a role in the pathogenesis of hypertension. 相似文献
13.
B F O'Dowd 《Gene》1992,118(2):301-302
The gene encoding the human D4 dopamine receptor has evolved by gaining at least five internal repeats which are located within exons 3 and 4, and in the intervening intron 3 sequence. The amino acid sequence in the cytoplasmic loop of the receptor, involved in G protein coupling, has been altered by these gene changes. 相似文献
14.
Anneleen Spooren Pieter Rondou Katarzyna Debowska Béatrice Lintermans Linda Vermeulen Bart Samyn Kamila Skieterska Griet Debyser Bart Devreese Peter Vanhoenacker Urszula Wojda Guy Haegeman Kathleen Van Craenenbroeck 《Cellular signalling》2010,22(4):600-609
Dopamine receptors are G-protein-coupled receptors involved in the control of motivation, learning, and fine-tuning of motor movement, as well as modulation of neuroendocrine signalling. Stimulation of G-protein-coupled receptors normally results in attenuation of signalling through desensitization, followed by internalization and down-regulation of the receptor. These processes allow the cell to regain homeostasis after exposure to extracellular stimuli and offer protection against excessive signalling.Here, we have investigated the agonist-mediated attenuation properties of the dopamine D4 receptor.We found that several hallmarks of signal attenuation such as receptor phosphorylation, internalization and degradation showed a blunted response to agonist treatment. Moreover, we did not observe recruitment of β-arrestins upon D4 receptor stimulation. We also provide evidence for the constitutive phosphorylation of two serine residues in the third intracellular loop of the D4 receptor.These data demonstrate that, when expressed in CHO, HeLa and HEK293 cells, the human D4 receptor shows resistance to agonist-mediated internalization and down-regulation. Data from neuronal cell lines, which have been reported to show low endogenous D4 receptor expression, such as the hippocampal cell line HT22 and primary rat hippocampal cells, further support these observations. 相似文献
15.
Kentaro Mizuta Yi Zhang Dingbang Xu Fumiko Mizuta Frank D’Ovidio Eiji Masaki Charles W Emala 《Respiratory research》2013,14(1):89
Background
Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling.Methods
The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists ( or A68930) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or SKF38393, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. A68930Results
Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists or SCH23390. SCH39166 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. A68930Conclusions
These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM. 相似文献16.
多巴胺D3受体(D3R)的神经科学新进展 总被引:6,自引:0,他引:6
多巴胺(DA)是脑内一种重要的神经递质,通过不同DA受体亚型调控运动功能、认知活动和药物成瘾等生理、病理过程。多巴胺D3受体(D3R)属于D2样受体,但其功能长期不明。近年来,人们对它在神经科学中的意义有了新的认识。首先,D3R的信号通路独特,它被激活后显示细胞增殖效应,但cAMP信号传导途径不明显。其次,D3R基因敲除小鼠研究提示,正常生理状态下D3R仅表现辅助功能:在特定病理条件下,D3R显示出重要的“平衡缓冲作用”,在精神分裂症、帕金森病(PD)治疗中运动障碍副作用LID的发生和毒品复吸等病理过程扮演了重要角色。因此,D3R是一个重要的药物靶标。D3R拮抗剂在精神分裂症治疗中显示了临床前景,D3R激动剂则对PD治疗和毒品复吸防治展示了应用价值。 相似文献
17.
The dopamine D1 receptor plays a major role in mediating behavioral responses to cocaine administration. The time course for the acquisition and the relative stability for the expression of behavioral responses suggest the involvement of enduring neuroadaptations in response to repeated cocaine exposure. Changes in gene expression through the D1 receptors may accompany and mediate the development of such neuroadaptations to repeated cocaine stimulation. To test this possibility, we systematically compared the expression of the fos and Jun family immediate early genes in the nucleus accumbens and caudoputamen in D1 receptor mutant and wild-type control mice after acute and repeated cocaine exposure. Moreover, we compared the expression of three molecules that have been implicated in mediating the actions of cocaine, Galphaolf, beta-catenin and brain-derived neurotrophic factor, in the two groups of mice before and after cocaine administration. We found that there is a lack of induction of c-Fos, FosB, Fra-2 and JunB by acute cocaine exposure, and of DeltaFosB by repeated cocaine administration in both the NAc and CPu of D1 receptor mutant mice compared with wild-type control mice. Moreover, the D1 receptor is differentially required for mediating Galphaolf, beta-catenin and BDNF expression in the NAc and CPu upon cocaine exposure. These results suggest that the D1 receptor is a critical mediator for cocaine-induced expression of these genes. 相似文献
18.
《Life sciences》1995,56(18):PL365-PL368
Dopaminergic compounds affect gastric secretion and response to experimental gastric mucosal injury. We showed previously that the novel dopamine D4 receptor antagonist, clozapine, significantly reduces gastric acid secretion and restraint stress-induced gastric lesions. Because the selectivity of clozapine for D4 receptors has recently been questioned, we tested the ability of a known d1 receptor blocker, SCH23390, to affect clozapine-induced reduction in gastric acid secretion. SCH23390 given i.p. or i.c.v., at doses that did not affect gastric acid secretion, significantly blocked the anti-secretory effect of clozapine, administered either peripherally or centrally. These data suggest that neither clozapine nor SCH23390 exhibit as high a degree of selectivity for the dopamine D4 and d1 receptor, respectively, as previously believed. 相似文献
19.
The dopamine D4 receptor (DRD4) gene exhibits a large amount of expressed polymorphism in humans. To understand the evolutionary history of the first exon of DRD4-which in humans contains a polymorphic 12bp tandem duplication, a polymorphic 13bp deletion, and other rare variants-we examined the homologous exon in thirteen other primate species. The great apes possess a variable number of tandem repeats in the same region as humans, both within and among species. In this sense, the 12bp tandem repeat of exon 1 is similar to the 48bp VNTR of exon 3 of DRD4, previously shown to be polymorphic in all primate species examined. The Old World monkeys show no variation in length, and a much higher conservation of amino acid sequence than great apes and humans. The New World monkeys show interspecific differences in length in the region of the 12bp polymorphism, but otherwise show the higher conservation seen in Old World monkeys. The different patterns of variation in monkeys compared to apes suggest strong purifying selective pressure on the exon in these monkeys, and somewhat different selection, possibly relaxed selection, in the apes. 相似文献
20.
Polymorphism in intron I of the human dopamine D4 receptor is described. 相似文献