首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Despite their opposite effects on prolactin secretion, both dopamine and angiotensin II inhibit adenylate cyclase activity in homogenates of anterior pituitary cells in primary culture. Dopamine and angiotensin II inhibition of adenylate cyclase was not additive, suggesting that both neurohormones inhibit the adenylate cyclase of the lactotroph cells. Pretreatment with Bordetella pertussis toxin (islet activator protein) completely suppressed the dopamine-induced inhibition of both adenylate cyclase and prolactin secretion. The islet activator protein also reversed the angiotensin II-induced inhibition of the adenylate cyclase activity. In contrast, angiotensin II stimulation of prolactin release was not affected by the toxin. Angiotensin II also induced a dose-dependent stimulation of inositol phosphates (250%) with an EC50 of 0.1 nM, close to that observed for prolactin secretion. Islet activator protein pretreatment did not block the stimulation of inositol phosphate production. Dopamine inhibited the angiotensin II-stimulated prolactin release and the production of inositol phosphates induced by angiotensin II. It is concluded that angiotensin II and dopamine receptors of lactotroph cells are able to modulate both cAMP and inositol phosphate production. The dopamine receptor of lactotrophs appears to be the first example of a receptor which is negatively coupled to the production of inositol phosphates.  相似文献   

2.
A dopamine-inhibited adenylate cyclase has been demonstrated in anterior pituitary gland of adult female rats, lactating and not lactating. This inhibitory effect was completely GTP dependent. In contrast, in the adenohypophysis of male rats, dopamine had no detectable effect on adenylate cyclase activity. In female rats the inhibition of the enzyme appears mediated by specific dopaminergic receptors: the effect of dopamine was mimicked by the dopaminergic agonists apomorphine and the ergot derivative CH 29–717, while norepinephrine was much less potent. On the other hand, the dopaminergic antagonists trifluoperazine and sulpiride competitively antagonized the dopamine inhibition of the adenylate cyclase. The possibility that the dopamine-inhibited enzyme is located in mammotrophs appears supported 1) by its observation in the female rat pituitary, which contains this type of cells in much larger proportion than the male gland (33–38% vs. < 5%); 2) by the pharmacological similarity between the dopaminergic receptors mediating the adenylate cyclase inhibition (this work) and those regulating prolactin release (which have been characterized in previous studies). The well known inhibition of prolactin release brought about by dopamine could therefore be mediated, at least in part, by a decrease in the intracellular level of cAMP.  相似文献   

3.
The abilities of sulpiride, metoclopramide, clozapine, loxapine, chlorpromazine, thioridazine, fluphenazine, haloperidol, (+)-butaclamol and RMI 81,582 to displace 3H-spiroperidol from rat pituitary and striatal membranes in vitro were compared to their abilities to stimulate rat prolactin secretion in vivo. There was a significant correlation between the abilities of clozapine, chlorpromazine, thioridazine, fluphenazine, RMI 81,582, haloperidol and (+)-butaclamol to bind to pituitary and striatal spiroperidol binding sites and to stimulate rat prolactin secretion. Loxapine was somewhat more potent and sulpiride and metoclopramide were markedly more potent in their abilities to stimulate prolactin secretion than would be predicted on the basis of their abilities to bind to pituitary dopamine receptors as measured by antagonism of 3H-spiroperidol binding. The abilities of metoclopramide and sulpiride to increase prolactin secretion and to produce anti-psychotic and extrapyramidal effects may be mediated by action at dopamine receptors which differ from those at which classical neuroleptics act, and they may also be mediated by non-dopaminergic mechanisms. Potency as inhibitors of 3H-neuroleptic binding in the rat pituitary or striatum appears to have heretofore unappreciated limitations to predict physiological functions such as prolactin stimulation and anti-psychotic activity.  相似文献   

4.
The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [3H]-ATP to [3H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity.  相似文献   

5.
Dopaminergic Mechanisms in the Teleost Retina   总被引:12,自引:6,他引:6  
A specific dopamine-sensitive adenylate cyclase has been identified in homogenates of the teleost (carp) retina. Maximal stimulation by 100 microM-dopamine resulted in a 5--10-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 1 microM. l-Noradrenaline and l-adrenaline were some 10 times less potent than dopamine whilst the alpha- and beta-adrenoreceptor agonists, l-phenylephrine and dl-isoprenaline were inactive. Apomorphine elicited a partial stimulation of adenylate cyclase activity whilst various ergot alkaloids produced mixed agonist/antagonist responses. Dopamine-stimulated adenylate cyclase activity was potently antagonised by various neuroleptic drugs including fluphenazine, alpha-flupenthixol and alpha-piflutixol, and to a lesser extent by the butyrophenone derivatives haloperidol and spiperone. The benzamide derivatives, metoclopramide and sulpiride, together with the alpha- and beta-adrenoreceptor blocking agents, phentolamine and propranolol respectively were essentially inactive at blocking dopamine-stimulated adenylate cyclase activity. These data suggest the presence of a highly specific dopamine-sensitive adenylate cyclase in homogenates of teleost retina possessing similar pharmacological properties to the dopamine-sensitive adenylate cyclase observed in the mammalian central nervous system.  相似文献   

6.
Regulation of adenohypophyseal hormone secretions has been shown to involve cyclic AMP production, modulation of phosphatidyl inositol diphosphate breakdown and Ca2+ mobilization. Various neurohormone receptors are positively or negatively coupled to adenylate cyclase activity in anterior pituitary cells. The effects of these neurohormones on adenylate cyclase activity are consistent with the effect on hormone secretions, suggesting that modulation of the enzyme activity is actually involved in the regulation of adenohypophyseal secretions. Thus DA inhibits, whereas VIP stimulates adenylate cyclase activity of the same cell type, which, according to the effect of these neurohormones on prolactin secretion, appear to be lactotrophs. On the other hand, SRIF inhibits, whereas GRF stimulates the adenylate cyclase activity of another cell type, namely somatotrophs, whereas CRF appears to act on a third cell type, corticotrophs. Peripheral hormones have been shown to modulate the sensitivity of anterior pituitary cells to these neurohormones. Estradiol long-term treatment has an anti-dopaminergic effect on prolactin secretion. The steroid also suppresses the dopamine inhibition of adenylate cyclase. This effect appears selective to the DA inhibition, since AII inhibition of the enzyme is only partially reduced, whereas the somatostatin inhibition is markedly increased. Peripheral hormones seem to affect the sensitivity of adenohypophyseal cells not only by modulating the number of receptors for a given neurohormone but also by interfering with the coupling mechanisms of these receptors. AII and DA inhibit the adenylate cyclase activity of lactotroph cells. The prolactin stimulation induced by angiotensin is not consistent with the effect of the peptide on adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The present study investigated the pharmacological properties of dopamine receptors that functioned in the termination of pupal diapause in the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Dopamine receptors are classified according to their structure and function into two subfamilies as D1‐ and D2‐like receptors. D1‐like receptors activate, whereas D2‐like receptors inhibit, adenylate cyclase. We examined the effects of agonists and antagonists selective for D1‐ and D2‐like receptors on the diapause state. As A. pernyi is a long‐day species, pupal diapause is maintained during short days and can be terminated by exposure to a long‐day photoperiod. The D2‐like receptor‐selective agonist quinpirole delayed the timing of adult emergence under long days, and the D2‐receptor‐selective antagonist sulpiride terminated pupal diapause even under a short‐day photoperiod. The D1‐like receptor‐selective agonist and antagonist, SKF‐38393 and SCH‐23390, respectively, caused no significant effects on diapause pupae. These results suggest that not D1‐ but D2‐like receptors mediated diapause regulation in A. pernyi. This dopamine pathway appeared to block the termination of pupal diapause. Furthermore, the actions of the cAMP analog 8‐CPT‐cAMP and dopamine receptor antagonists upon diapause pupae were similar, which supports the notion that D2‐like receptors involved in diapause of this insect prevent adenylate cyclase from producing cAMP like vertebrate D2‐like receptors. Taken together, our findings suggest that dopamine blocked diapause termination through D2‐like receptors that inhibited adenylate cyclase in A. pernyi. During short days under which diapause was maintained in pupae, the dopaminergic mechanism might be stimulated to suppress cAMP levels in cells regulating diapause.  相似文献   

8.
It has been reported that hypophysectomy (HYPOX) would antagonize the development of a neuroleptic-induced dopamine receptor hypersensitivity, and suggested that the neuroleptic-induced dopamine receptor hypersensitivity may be mediated by the neuroleptic-induced hyperprolactinemia. Conversely, we and others have reported on the ability of HYPOX animals to develop a neuroleptic-induced dopamine receptor hypersensitivity. The present study was undertaken to define the possible role(s) of prolactin in the modulation of striatal dopamine receptor sensitivity. The data from these studies indicate: that HYPOX alone will result in the development of a striatal dopamine receptor hypersensitivity; that the HYPOX-induced dopamine receptor hypersensitivity could be increased by the chronic administration and withdrawal of haloperidol; that administration of prolactin to HYPOX rats would partially antagonize the development of the neuroleptic-induced dopamine receptor hypersensitivity; and that the administration of prolactin alone had minimal effects on the apomorphine-induced behavior or neurochemistry of the HYPOX animals. These results suggest that the neuroleptics do not require the presence of a pituitary secretion (specifically, prolactin) to induce a striatal dopamine receptor hypersensitivity; however, they do indicate that a pituitary secretion, perhaps prolactin, may have the ability to modulate striatal dopamine sensitivity.  相似文献   

9.
The present study demonstrates that 3,4-dihydroxyphenylethylamine (DA, dopamine) prevents neurotensin (NT) stimulation of both prolactin (PRL) release and calcium influx by interacting with specific receptors that are functionally linked to calcium channels. As shown by the studies with dispersed cells from rat anterior pituitary, the pharmacology of the control of PRL release and calcium influx, both induced by NT, was found to be typical of a DAergic process. This was demonstrated by the order of potency of agonists in inhibiting PRL release and calcium influx (DA greater than epinephrine greater than norepinephrine much greater than isoproterenol); by the high affinity of antagonists such as haloperidol and fluphenazine for this process; and by the high degree of stereoselectivity of sulpiride. Specific D2 receptor agonists, such as bromocriptine and lisuride, and the specific D2 receptor antagonist (-)-sulpiride were found to be highly potent on the DA receptors negatively coupled with calcium channels and PRL release. DA was found to lack the capacity to change the influx of calcium induced by either the sodium channel activator veratridine or high extracellular potassium levels, thus indicating a specific action of this amine on calcium channels sensitive to NT. In a range of concentrations that are effective in inhibiting either the calcium influx or the PRL release, both induced by NT, DA did not alter the cyclic AMP generating system. DA (from 1.0 nM to 50 nM) did not affect adenylate cyclase activity in rat pituitary gland homogenates and did not modify intracellular cyclic AMP levels in pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Summary Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 M for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.  相似文献   

11.
The concept of multifactorial pituitary control is now well established. As in other cell systems, integration of complex messages involves dynamic interactions of receptors and coupling mechanisms. Regulation of adenohypophyseal secretions has been shown to involve cyclic AMP production, the modulation of phosphatidylinositol phosphate breakdown and Ca2+ mobilization. Dopamine, somatostatin and angiotensin II receptors are negatively coupled to adenylate cyclase in anterior pituitary cells. In the case of angiotensin, this effect on adenylate cyclase appears paradoxical since the peptide markedly stimulates prolactin secretion. In fact, angiotensin II also markedly stimulates inositol phosphate production and this effect could account for the stimulated hormone secretion. In addition, dopamine could inhibit inositol phosphate production stimulated by angiotensin II and thyrotropin-releasing hormone. Dopamine and somatostatin also directly modulate voltage-dependent calcium channels, perhaps through a direct coupling with potassium channels. On the other hand, steroids modulate the sensitivity of adenohypophyseal cells to neurohormones by different mechanisms. In the case of somatostatin, it increases the number of specific binding sites, while in the case of dopamine estradiol affects the transduction mechanisms of D2 dopamine receptors. In conclusion, dopamine and somatostatin receptors appear coupled to various transduction mechanisms through pertussis-sensitive G proteins in anterior pituitary cells.  相似文献   

12.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

13.
Schmidt MJ  Hill LE 《Life sciences》1977,20(5):789-797
Adenylate cyclase activity was determined in homogenates of the corpus striatum and pituitary gland. Dopamine and several ergots stimulated cyclic AMP synthesis in the striatum, but no stimulation was seen in the pituitary gland. None of the ergots tested were as active as dopamine itself, and all were able to partially inhibit the dopamine-induced activation of adenylate cyclase. Lergotrile, a simple ergoline derivative which displays dopamine agonist activities in the pituitary gland and striatum, did not stimulate adenylate cyclase in either tissue. These findings show that the in vivo dopaminergic activity of ergots is not reflected in the dopamine-dependent adenylate cyclase assay using either the corpus striatum or the pituitary gland. It is suggested that those dopamine receptors in the pituitary gland which mediate prolactin release are not associated with adenylate cyclase.  相似文献   

14.
Intravenous injection of a sonicated dispersion of bovine brain phospholipids results in a significant change in both NaF-dependent and dopamine dependent adenylate cyclase activity. High dosage of phospholipids inhibits the dopamine dependent, but not the NaF dependent, adenylate cyclase activity. The stimulation of cyclase activity is accompanied by an increased level of cAMP in mice brains. Treatment with haloperidol abolishes the increase in cAMP. Among individual phospholipids, phosphatidylserine is the most active component for inducing the activation of DA-dependent adenylate cyclase activity.  相似文献   

15.
Somatostatin inhibits agonist-stimulated cAMP synthesis and ACTH secretion from mouse pituitary tumor cells. It also decreases basal hormone release without affecting cAMP levels and inhibits ACTH secretion in response to agonists whose action is independent of prior cAMP synthesis. These inhibitory effects are attenuated by pertussis toxin, suggesting that the inhibitory guanine nucleotide-binding regulatory subunit of adenylate cyclase modulates effectors, other than adenylate cyclase, during transduction of negative hormonal signals.  相似文献   

16.
Chlorpromazine, haloperidol and clozapine are approximately equipotent in antagonizing dopamine sensitive adenylate cyclase activity in homogenates of rat brain striatum, in contrast to the differences in clinical antipsychotic potencies reported by others. The antagonism appeared to occur at a structurally specific dopamine site, as inhibition by a series of chlorpromazine analogues of similar hydrophobicity exhibited a structural specificity similar to that found for their neuroleptic and cataleptic activities. Sulpiride, a dopamine antagonist with antipsychotic activity, and metoclopramide, a structurally related central dopamine antagonist, failed to inhibit the dopamine sensitive adenylate cyclase. Pre-treatment of rats with haloperidol (3 mg/kg per day) for 6 or 28 days did not induce a supersensitive response of the adenylate cyclase to stimulation by dopamine or apomorphine or inhibition by clozapine. It was concluded that the dopamine sensitive adenylate cyclase may not be the site of action of all anti-psychotic agents.  相似文献   

17.
J W Kebabian 《Life sciences》1978,23(5):479-483
Two classes of dopamine receptor mechanism are defined according to their association with, or independence from, a dopamine-sensitive adenylyl cyclase. Dopamine receptors unrelated to adenylyl cyclase are designated type alpha. Dopamine receptors linked to adenylyl cyclase are designated type beta. Drugs discriminate between the two receptor mechanisms. The dopaminergic ergots (lisuride, lergotrile and CB-154) and their antagonists (such as metoclopramide) are relatively specific for the alpha-dopaminergic receptor in the anterior pituitary. Other agonists (e.g. apomorphine and dopamine) and antagonists (e.g. antipsychotic phenothiazines and butyrophenones) affect both classes of receptor.  相似文献   

18.
Clinical and pharmacological evidence suggested that dopamine is involved in the control of esophageal motility. The present study was designed to determine whether or not dopamine receptors are present in human esophagus. With this aim we measured adenylate cyclase activity as a biochemical index of dopamine receptor function in esophageal specimens taken from five patients during surgery for upper esophageal carcinoma. The selective D-1 agonist fenoldopam stimulated cAMP formation in the lower esophageal sphincter, but not in the esophageal body; this effect was prevented by the selective D-1 antagonist SCH 23390 and by d-butaclamol. Bromocriptine, a selective D-2 stimulator, inhibited adenylate cyclase activity in the lower esophageal sphincter, an effect blocked by the D-2 antagonist (-)sulpiride. No effects of bromocriptine were found in the esophageal body. These data indicate that both D-1 and D-2 receptors are present in the lower esophageal sphincter, but not in esophageal body and emphasize the role of dopamine in the regulation of esophageal function.  相似文献   

19.
Haloperidol inhibited dopamine (DA) mediated behaviours and induced pronounced catalepsy in rodents. Metoclopramide, sulpiride, sultopride, tiapride and clebopride, in general, also inhibited these behaviours but only clebopride induced marked catalepsy. Haloperidol displaced 3H-haloperidol and 3H-spiperone from striatal binding sites and inhibited DA stimulated cyclase from striatal and mesolimbic regions. In general, substituted benzamide drugs displaced labelled ligands, but did not inhibit adenylate cyclase. Elevations of striatal HVA produced by haloperidol and sulpiride, but not other benzamide drugs, were partially reversed by atropine. Hypophysectomy did not prevent the elevation of forebrain HVA produced by sulpiride and metoclopramide. Substituted benzamide drugs appear to act on cerebral DA receptors that are independent of DA-sensitive adenylate cyclase and are not balance by a cholinergic input.  相似文献   

20.
The presence of adenosine receptors coupled to adenylate cyclase in cultured cardiocytes from atria and ventricles from neonatal rats is demonstrated in these studies. N-Ethylcarboxamideadenosine (NECA), l-N6-phenylisopropyladenosine (PIA), and 2-chloroadenosine (2-cl-Ado) stimulated adenylate cyclase in a concentration-dependent manner in both cultured atrial and ventricular cells. The order of potency of stimulation was NECA > PIA > 2-cl-Ado. The stimulation of adenylate cyclase by NECA was enhanced by guanine nucleotides and was blocked by 3-isobutyl-1-methylxanthine in both these cells. Other agonists such as epinephrine, norepinephrine, dopamine, F?, and forskolin were also able to stimulate adenylate cyclase, although the extent of stimulation by these agents was higher in ventricular than in atrial cells. The stimulation of adenylate cyclase by epinephrine and norepinephrine was inhibited by propranolol but not by phentolamine. On the other hand, phentolamine, propranolol, and haloperidol inhibited dopamine-stimulated adenylate cyclase activity to the same extent. Forskolin, at its maximal concentration, potentiated the stimulatory effect of epinephrine, norepinephrine, and dopamine on adenylate cyclase in both atrial and ventricular cardiocytes, but the interaction of NECA with epinephrine, norepinephrine, or dopamine was different in atrial and ventricular cells. The stimulation by an optimal concentration of NECA was additive with maximal stimulation by the catecholamines in atrial cells but not in ventricular cells. The data suggest the existence of adenosine “Ra” and catecholamine receptors in cultured atrial and ventricular cardiocytes. It can be postulated that adenosine in addition to its role as a potent vasodilator might regulate cardiac performance through its interaction with “Ra” receptors associated with adenylate cyclase. The difference in the mode of interaction of adenosine with catecholamines in atrial and ventricular cells suggests that the mechanism by which these agents activate adenylate cyclase may be different in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号