共查询到20条相似文献,搜索用时 15 毫秒
1.
Suzy Renckens Henri De Greve Marc Van Montagu Jean-Pierre Hernalsteens 《Molecular & general genetics : MGG》1992,233(1-2):53-64
Summary TransgenicPetunia hybrida clones harbouring the T-DNA gene2 ofAgrobacterium tumefaciens were used to test a strategy for the trapping of plant transposable elements. In thePetunia line used, floral variegation is due to the presence of the non-autonomous transposable elementdTph1 at theAn1 locus. The gene2 product converts the auxin precursor indole-3-acetamide and its analogue 1-naphthalene acetamide into the active auxins indole-3-acetic acid and 1-naphthalene acetic acid. Plant cells that express gene2 can use a low concentration of the precursors as auxins and become sensitive to the toxicity of high concentrations of these compounds. By selecting protoplast-derived microcalli or seedlings able to grow on medium with high precursor concentrations, variant plants were obtained in which gene2 was no longer expressed. Southern analysis, using gene2-specific probes, revealed that in one variant the T-DNA was deleted. For 30 other variants no alteration in gene2 structure was observed, indicating that transposable element insertion was not responsible for the inactivation of gene2. Analysis with restriction enzymes allowing discrimination between methylated or non-methylated DNA sequences showed that the inactivated gene2 sequences were methylated. Addition of the in vivo methylation inhibitor 5-azacytidine to the medium led to reactivation of gene2 expression in some of the variants. These observations demonstrated that reversible DNA methylation was the main cause of silencing of gene2 in this system. 相似文献
2.
The cytosine analog 5-azacytidine (5-AzaC) is a demethylating agent that is also known to induce mutagenesis in mammalian cells. In this study, the mutagenic potential of this drug was tested in the G10 and G12 transgenic Chinese hamster cell lines, which have a single bacterial gpt gene integrated into the genome at different sites, with its expression driven by a simian virus 40 (SV40) promoter. We show that the mutation frequencies following a 48-h exposure to different concentrations of 5-AzaC were 10 to 20 times higher than those of any of the other numerous mutagens that have been tested in the G10-G12 system. Moreover, the mutation frequencies were much higher in the G10 cell line than in the G12 cells. Detailed molecular analysis of the 6-thioguanine (6-TG)-resistant variants demonstrated that transgene silencing by de novo DNA methylation and increased chromatin condensation in the SV40 promoter was the major factor responsible for this high level of 6-TG resistance. As would be expected, exposure to 5-AzaC lowered the overall genomic DNA methylation levels, but it unexpectedly caused hypermethylation and increased chromatin condensation of the transgene in both the G10 and G12 cell lines. These results provide the first evidence that 5-AzaC may also induce transgene-specific DNA methylation, a phenomenon that can further be used for the elucidation of the mechanism that controls silencing of foreign DNA. 相似文献
3.
4.
Mingmin Zhao David San León Ma. Otilia Delgadillo Juan Antonio García Carmen Simón‐Mateo 《The Plant journal : for cell and molecular biology》2014,79(3):440-452
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced. 相似文献
5.
6.
A vicious cycle: RNA silencing and DNA methylation in plants 总被引:12,自引:0,他引:12
7.
8.
9.
10.
11.
12.
The demethylating drug 5-aza-2'-deoxycytidine (5-aza-2dC) is frequently used to investigate the effect of global DNA demethylation on gene expression in cultured mammalian cells. Here, we describe a method that uses the reactivation of an X-inactivated green fluorescent protein (GFP) transgene as a marker to enrich for cells that have undergone drug-induced demethylation. By combining it with microarray gene expression profiling, we demonstrate the method's utility in identifying genes activated by global DNA demethylation. 相似文献
13.
14.
对真核生物的表观遗传学研究表明,5-甲基胞嘧啶修饰参与了多种重要生理功能。虽然在原核生物中也存在5-甲基胞嘧啶修饰,但其具体功能尚未确定。大肠杆菌编码的Dcm甲基转移酶负责DNA的5-甲基胞嘧啶修饰[1],有研究报道显示,Dcm与细菌的限制修饰系统相关[2];也有研究报道dcm基因能影响大肠杆菌中核糖体基因的表达,从而影响初级代谢和次级代谢[3]。本期介绍了高婕、贺新义等发表的论文"大肠杆菌甲基转移酶dcm基因的表达对变铅青链霉菌的多效性影响"[4],作者巧妙地利用变铅青链霉菌的DNA无甲基化修饰这一特点,将大肠杆菌dcm基因导入变铅青链霉菌,研究了5-甲基胞嘧啶修饰在变铅青链霉菌中的功能。结果发现,DNA的5-甲基胞嘧啶修饰不仅可影响变铅青链霉菌的形态和生理分化,而且还能激活放线紫红素沉默基因的表达。论文作者以变铅青链霉菌为材料,拓展了对原核生物DNA5-甲基胞嘧啶修饰的生理功能的认识。以此为基础的深入研究,不仅有助于揭示5-甲基胞嘧啶修饰在原核生物中的功能,而且有可能为沉默抗生素基因的表达或抗生素产量的提高提供一个新的途径。 相似文献
15.
16.
17.
Huettel B Kanno T Daxinger L Bucher E van der Winden J Matzke AJ Matzke M 《Biochimica et biophysica acta》2007,1769(5-6):358-374
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment. 相似文献
18.
19.
Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytosine methylation 总被引:3,自引:0,他引:3
Currently available vectors for mammalian cells suffer from a number of limitations which make them only partially useful for genetic modification of eukaryotic cells and organisms and for gene therapy. While integration of a vector can lead to unpredictable interactions with the host genome and silencing of the integrated transgene, most non-integrating vectors mediate only transient expression of a transgene. All available vector types can lead to transformation of the recipient cell and many of them can cause serious immunological side effects in the organism. The ideal vector has to be free of these side effects and should allow long-term expression of a transgene in the absence of selection. In this report we describe a novel non-viral episomal expression system fulfilling these criteria. The gene encoding the truncated rat NGF-receptor gene under the control of the CMV-promoter was inserted into a vector construct containing a scaffold/matrix attached region (S/MAR). This vector was then transfected into CHO cells and human HaCat cells. We show that this vector replicates episomally in these cells and is mitotically stable in the abscence of selection over more than 100 generations. Moreover, we provide the first experimental data that the CMV-promoter in an episome is not subject to silencing by cytosine methylation, thus allowing long-term expression of the transgene in the absence of selection. 相似文献
20.
Suzuki S Ono R Narita T Pask AJ Shaw G Wang C Kohda T Alsop AE Marshall Graves JA Kohara Y Ishino F Renfree MB Kaneko-Ishino T 《PLoS genetics》2007,3(4):e55
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation. 相似文献