首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine, one of main modulatory neurotransmitters of the nervous system acts on target cells through two classes of G protein-coupled receptors, D1 and D2. The two dopamine receptor classes display different structures, interact with different regulatory partners (including heterotrimeric G proteins) and, accordingly, have independent evolutionary origins. In vertebrates, each of these receptor classes comprises several subtypes, generated by two steps of gene duplications, early in vertebrate evolution. In the D1 receptor class, the D1A, D1B, D1C and D1D subtypes, and in the D2 class, the D2, D3 and D4 receptor subtypes have been conserved in most vertebrate groups. This conservation has been driven by the acquisition, by each receptor subtype, of a small number of specific properties, which were selected for adaptive purpose in vertebrates. Among these properties, affinity for dopamine, the natural ligand, intrinsic receptor activity, and agonist-induced desensitization clearly distinguish the receptor subtypes. In addition, each dopamine receptor subtype is addressed to a specific location within neuronal networks, although detailed information is lacking for several receptor subtypes. Receptors localization at diverse subcellular places in neurons may also differ from one subtype to another, resulting in different ways of regulating cell signalisation. One challenge for future research on dopamine and its receptors would be to identify the nature of the protein partners and the molecular mechanisms involved in localizing receptors to the neuronal plasma membrane. In this respect, the evolutionary approach we have undertaken suggests that, due to gene duplications, a reasonable degree of freedom exists in the tight organisation of dopamine receptors in neurons. This "evolvability" of dopamine systems has been instrumental to adapt the vertebrate species to nearly all the possible environments.  相似文献   

2.
3.
The neuromodulatory effects of dopamine on the central nervous system of craniates are mediated by two classes of G protein-coupled receptors (D1 and D2), each comprising several subtypes. A systematic isolation and characterization of the D1 and D2-like receptors was carried out in most of the Craniate groups. It revealed that two events of gene duplications took place during vertebrate evolution, before or simultaneously to the emergence of Gnathostomes. It led to the conservation of two-to-four paralogous receptors (subtypes), depending on the species. Additional duplication of dopamine receptor gene occurred independently in the teleost fish lineage. Duplicated genes were maintained in most of the vertebrate groups, certainly by the acquisition of a few functional characters, specific of each subtypes, as well as by discrete changes in their expression territories in the brain. The evolutionary scenario elaborated from these data suggests that receptor gene duplications were the necessary conditions for the expansion of vertebrate forebrain to occur, allowing dopamine systems to exert their fundamental role as modulator of the adaptive capabilities acquired by vertebrate species.  相似文献   

4.
Abstract: Although members of the multiple vertebrate/mammalian dopamine D1 receptor gene family can be selectively classified on the basis of their molecular/phylogenetic, structural, and tissue distribution profiles, no subtype-specific discriminating agents have yet been identified that can functionally differentiate these receptors. To define distinct pharmacological/functional attributes of multiple D1-like receptors, we analyzed the ligand binding profiles, affinity, and functional activity of 12 novel NNC compounds at mammalian/vertebrate D1/D1A and D5/D1B, as well as vertebrate D1C/D1D, dopamine receptors transiently expressed in COS-7 cells. Of all the compounds tested, only NNC 01-0012 displayed preferential selectivity for vertebrate D1C receptors, inhibiting [3H]SCH-23390 binding with an estimated affinity (∼0.6 n M ) 20-fold higher than either mammalian/vertebrate D1/D1A or D5/D1B receptors or the D1D receptor. Functionally, NNC 01-0012 is a potent antagonist at D1C receptors, inhibiting to basal levels dopamine (10 µ M )-stimulated adenylyl cyclase activity. In contrast, NNC 01-0012 (10 µ M ) exhibits weak antagonist activity at D1A receptors, inhibiting only 60% of maximal cyclic AMP production by dopamine, while acting as a partial agonist at vertebrate D1B and D1D receptors, stimulating adenylyl cyclase activity by ∼33% relative to the full agonist dopamine (10 µ M ), an effect that was blocked by the selective D1 receptor antagonist NNC 22-0010. These data clearly suggest that the benzazepine NNC 01-0012, despite lacking the N -methyl residue in the R3 position, is a selective and potent D1C receptor antagonist. Moreover, the differential signal transduction properties exhibited by NNC 01-0012 at these receptor subtypes provide further evidence, at least in vertebrates, for the classification of the D1C receptor as a distinct D1 receptor subtype.  相似文献   

5.
We have shown in a previous study that desensitization and internalization of the human dopamine D(1) receptor following short-term agonist exposure are mediated by temporally and biochemically distinct mechanisms. In the present study, we have used site-directed mutagenesis to remove potential phosphorylation sites in the third intracellular loop and carboxyl tail of the dopamine D(1) receptor to study these processes. Mutant D(1) receptors were stably transfected into Chinese hamster ovary cells, and kinetic parameters were measured. Mutations of Ser/Thr residues to alanine in the carboxyl tail demonstrated that the single substitution of Thr-360 abolished agonist-induced phosphorylation and desensitization of the receptor. Isolated mutation of the adjacent glutamic acid Glu-359 also abolished agonist-induced phosphorylation and desensitization of the receptor. These data suggest that Thr-360 in conjunction with Glu-359 may comprise a motif necessary for GRK2-mediated phosphorylation and desensitization. Agonist-induced internalization was not affected with mutation of either the Thr-360 or the Glu-359 residues. However, receptors with Ser/Thr residues mutated in the distal carboxyl tail (Thr-446, Thr-439, and Ser-431) failed to internalize in response to agonist activation, but were able to desensitize normally. These results indicate that agonist-induced desensitization and internalization are regulated by separate and distinct serine and threonine residues within the carboxyl tail of the human dopamine D(1) receptor.  相似文献   

6.
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors.  相似文献   

7.
The cephalochordate amphioxus (Branchiostoma floridae) has recently been placed as the most basal of all the chordates, which makes it an ideal organism for studying the molecular basis of the evolutionary transition from invertebrates to vertebrates. The biogenic amine, dopamine regulates many aspects of motor control in both vertebrates and invertebrates, and in both cases, its receptors can be divided into two main groups (D1 and D2) based on sequence similarity, ligand affinity and effector coupling. A bioinformatic study shows that amphioxus has at least three dopamine D1-like receptor sequences. We have recently characterized one of these receptors, AmphiD1/β, which was found to have high levels of sequence similarity to both vertebrate D1 receptors and to β-adrenergic receptors, but functionally appeared to be a vertebrate-type dopamine D1 receptor. Here, we report on the cloning of two further dopamine D1 receptors (AmphiAmR1 and AmphiAmR2) from adult amphioxus cDNA libraries and their pharmacological characterisation subsequent to their expression in cell lines. AmphiAmR1 shows closer structural similarities to vertebrate D1-like receptors but shows some pharmacological similarities to invertebrate “DOP1” dopamine D1-like receptors. In contrast, AmphiAmR2 shows closer structural and pharmacological similarities to invertebrate “INDR”-like dopamine D1-like receptors.  相似文献   

8.
Abstract: NNC 01-0012, a second-generation benzazepine compound, pharmacologically differentiates multiple vertebrate D1 receptor subtypes (D1A, D1B, D1C, and D1D) and displays high selectivity and affinity for dopamine D1C receptors. Functionally, whereas NNC 01-0012 acts as a full or poor antagonist at D1C and D1A receptor-mediated cyclic AMP production, respectively, it exhibits partial agonist activity at the D1B receptor. To define some of the structural motifs that regulate the pharmacological and functional differentiation of vertebrate dopamine D1 receptors by NNC 01-0012, a series of receptor chimeras were constructed in which the divergent carboxyl-terminal (CT) receptor tails were replaced with the corresponding sequences of D1A, D1B, or D1C receptors. Substitution of the vertebrate D1B carboxyl-terminal-tail at position Tyr345 with carboxyl-terminal-tail sequences of the D1A receptor abolished the partial agonist activity of NNC 01-0012 without affecting dopamine-stimulated cyclic AMP accumulation. At vertebrate D1B/D1Cct -tail receptor mutants, however, the intrinsic activity of the partial agonist NNC 01-0012 (10 µM) was markedly enhanced (~60% relative to 10 µM dopamine) with no concomitant alteration in the molecule's ligand binding affinity or constitutive activity of the chimeric receptor. Similar results were obtained with other benzazepines such as SKF-38393 and SCH-23390, which act as partial agonists at vertebrate D1B receptors. Substitution of D1A and D1C receptor carboxyl-terminal tails with sequences encoded by the D1B receptor carboxyl-terminal tail did not, however, produce receptors with functional characteristics significantly different from wild type. Taken together, these data clearly suggest that in addition to well-characterized domains and amino acid residues in the third cytoplasmic loop, partial agonist activity at the D1B receptor is modulated by sequence-specific motifs within the carboxyl-terminal tail, a region that may underlie the possible structural basis for functionally divergent roles of multiple dopamine D1-like receptors.  相似文献   

9.
All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates.  相似文献   

10.
A series of novel 1H-pyrazolo-[3,4-c]cyclophepta[1,2-c]thiophenes was prepared and screened at selected dopamine receptor subtypes. Compound 4 (NGB 4420) displayed high affinity and selectivity (>100-fold) for the D(4) over D(2) and other CNS receptors. This compound was identified as a D(4) antagonist via its attenuation of dopamine agonist-induced GTPgamma(35)S binding at D(4) receptor.  相似文献   

11.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

12.
13.
A series of indole compounds have been prepared and evaluated for affinity at D2-like dopamine receptors using stably transfected HEK cells expressing human D2, D3, or D4 dopamine receptors. These compounds share structural elements with the classical D2-like dopamine receptor antagonists, haloperidol, N-methylspiperone, and benperidol. The compounds that share structural elements with N-methylspiperone and benperidol bind non-selectively to the D2 and D3 dopamine receptor subtypes. However, several of the compounds structurally similar to haloperidol were found to (a) bind to the human D2 receptor subtype with nanomolar affinity, (b) be 10- to 100-fold selective for the human D2 receptor compared to the human D3 receptor, and (c) bind with low affinity to the human D4 dopamine receptor subtype. Binding at sigma (sigma) receptor subtypes, sigma1 and sigma2, were also examined and it was found that the position of the methoxy group on the indole was pivotal in both (a) D2 versus D3 receptor selectivity and (b) affinity at sigma1 receptors. Adenylyl cyclase studies indicate that our indole compounds with the greatest D2 receptor selectivity are neutral antagonists at human D2 dopamine receptor subtypes. With stably transfected HEK cells expressing human D2 (hD2-HEK), these compounds (a) have no intrinsic activity and (b) attenuated quinpirole inhibition of adenylyl cyclase. The D2 receptor selective compounds that have been identified represent unique pharmacological tools that have potential for use in studies on the relative contribution of the D2 dopamine receptor subtypes in physiological and behavioral situations where D2-like dopaminergic receptor involvement is indicated.  相似文献   

14.
To delineate the structural determinants involved in the constitutive activation of the D1 receptor subtypes, we have constructed chimeras between the D1A and D1B receptors. These chimeras harbored a cognate domain corresponding to transmembrane regions 6 and 7 as well as the third extracellular loop (EL3) and cytoplasmic tail, a domain referred herein to as the terminal receptor locus (TRL). A chimeric D1A receptor harboring the D1B-TRL (chimera 1) displays an increased affinity for dopamine that is indistinguishable from the wild-type D1B receptor. Likewise, a chimeric D1B receptor containing the D1A-TRL cassette (chimera 2) binds dopamine with a reduced affinity that is highly reminiscent of the dopamine affinity for the wild-type D1A receptor. Furthermore, we show that the agonist independent activity of chimera 1 is identical to the wild-type D1B receptor whereas the chimera 2 displays a low agonist independent activity that is indistinguishable from the wild-type D1A receptor. Dopamine potencies for the wild-type D1A and D1B receptor were recapitulated in cells expressing the chimera 2 or chimera 1, respectively. However, the differences observed in agonist-mediated maximal activation of adenylyl cyclase elicited by the D1A and D1B receptors remain unchanged in cells expressing the chimeric receptors. To gain further mechanistic insights into the structural determinants of the TRL involved in the activation properties of the D1 receptor subtypes, we have engineered two additional chimeric D1 receptors that contain the EL3 region of their respective cognate wild-type counterparts (hD1A-EL3B and hD1B-EL3A). In marked contrast to chimera 1 and 2, dopamine affinity and constitutive activation were partially modulated by the exchange of the EL3. Meanwhile, hD1A-EL3B and hD1B-EL3A mutant receptors display a full switch in the agonist-mediated maximal activation, which is reminiscent of their cognate wild-type counterparts. Overall, our studies suggest a fundamental role for the TRL in shaping the intramolecular interactions implicated in the constitutive activation and coupling properties of the dopamine D1 receptor subtypes.  相似文献   

15.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

16.
Homologous desensitization of D(1) dopamine receptors is thought to occur through their phosphorylation leading to arrestin association which interdicts G protein coupling. In order to identify the relevant domains of receptor phosphorylation, and to determine how this leads to arrestin association, we created a series of mutated D(1) receptor constructs. In one mutant, all of the serine/threonine residues within the 3rd cytoplasmic domain were altered (3rdTOT). A second construct was created in which only three of these serines (serines 256, 258, and 259) were mutated (3rd234). We also created four truncation mutants of the carboxyl terminus (T347, T369, T394, and T404). All of these constructs were comparable with the wild-type receptor with respect to expression and adenylyl cyclase activation. In contrast, both of the 3rd loop mutants exhibited attenuated agonist-induced receptor phosphorylation that was correlated with an impaired desensitization response. Sequential truncation of the carboxyl terminus of the receptor resulted in a sequential loss of agonist-induced phosphorylation. No phosphorylation was observed with the most severely truncated T347 mutant. Surprisingly, all of the truncated receptors exhibited normal desensitization. The ability of the receptor constructs to promote arrestin association was evaluated using arrestin-green fluorescent protein translocation assays and confocal fluorescence microscopy. The 3rd234 mutant receptor was impaired in its ability to induce arrrestin translocation, whereas the T347 mutant was comparable with wild type. Our data suggest a model in which arrestin directly associates with the activated 3rd cytoplasmic domain in an agonist-dependent fashion; however, under basal conditions, this is sterically prevented by the carboxyl terminus of the receptor. Receptor activation promotes the sequential phosphorylation of residues, first within the carboxyl terminus and then the 3rd cytoplasmic loop, thereby dissociating these domains and allowing arrestin to bind to the activated 3rd loop. Thus, the role of receptor phosphorylation is to allow access of arrestin to its receptor binding domain rather than to create an arrestin binding site per se.  相似文献   

17.
Activation of dopamine D1 receptors is critical for the generation of glutamate-induced long-term potentiation at corticostriatal synapses. In this study, we report that, in striatal neurons, D1 receptors are co-localized with N-methyl-d-aspartate (NMDA) receptors in the postsynaptic density and that they co-immunoprecipitate with NMDA receptor subunits from postsynaptic density preparations. Using modified bioluminescence resonance energy transfer, we demonstrate that D1 and NMDA receptor clustering reflects the existence of direct interactions. The tagged D1 receptor and NR1 subunit cotransfected in COS-7 cells generated a significant bioluminescence resonance energy transfer signal that was insensitive to agonist stimulation and that did not change in the presence of the NR2B subunit, suggesting that the D1 receptor constitutively and selectively interacts with the NR1 subunit of the NMDA channel. Oligomerization with the NR1 subunit substantially modified D1 receptor trafficking. In individually transfected HEK293 cells, NR1 was localized in the endoplasmic reticulum, whereas the D1 receptor was targeted to the plasma membrane. In cotransfected cells, both the D1 receptor and NR1 subunit were retained in cytoplasmic compartments. In the presence of the NR2B subunit, the NR1-D1 receptor complex was translocated to the plasma membrane. These data suggest that D1 and NMDA receptors are assembled within intracellular compartments as constitutive heteromeric complexes that are delivered to functional sites. Coexpression with NR1 and NR2B subunits also abolished agonist-induced D1 receptor cytoplasmic sequestration, indicating that oligomerization with the NMDA receptor could represent a novel regulatory mechanism modulating D1 receptor desensitization and cellular trafficking.  相似文献   

18.
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is an important mechanism for regulating signaling transduction of functional receptors at the plasma membrane. We demonstrate here that both caveolae/lipid-rafts- and clathrin-coated-pits-mediated pathways were involved in agonist-induced endocytosis of the cannabinoid type 1 receptor (CB1R) in stably transfected human embryonic kidney (HEK) 293 cells and that the internalized receptors were predominantly sorted into recycling pathway for reactivation. The treatment of CB1 receptors with the low endocytotic agonist Δ9-THC induced a faster receptor desensitization and slower resensitization than the high endocytotic agonist WIN 55,212-2. In addition, the blockade of receptor endocytosis or recycling pathway markedly enhanced agonist-induced CB1 receptor desensitization. Furthermore, co-expression of phospholipase D2, an enhancer of receptor endocytosis, reduced CB1 receptor desensitization, whereas co-expression of a phospholipase D2 negative mutant significantly increased the desensitization after WIN 55,212-2 treatment. These findings provide evidences for the importance of receptor endocytosis in counteracting CB1 receptor desensitization by facilitating receptor reactivation. Moreover, in primary cultured neurons, the low endocytotic agonist Δ9-THC or anandamide exhibited a greater desensitization of endogenous CB1 receptors than the high endocytotic agonist WIN 55,212-2, CP 55940 or 2-arachidonoyl glycerol, indicating that cannabinoids with high endocytotic efficacy might cause reduced development of cannabinoid tolerance to some kind cannabinoid-mediated effects.  相似文献   

19.
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.  相似文献   

20.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号