首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plectin is a versatile cytoskeletal linker protein that preferentially localizes at interfaces between intermediate filaments and the plasma membrane in muscle, epithelial cells, and other tissues. Its deficiency causes muscular dystrophy with epidermolysis bullosa simplex. To better understand the functional roles of plectin beneath the sarcolemma of skeletal muscles and to gain some insights into the underlying mechanism of plectin-deficient muscular dystrophy, we studied in vivo structural and molecular relationships of plectin to subsarcolemmal cytoskeletal components, such as desmin, dystrophin, and vinculin, in rat skeletal muscles. Immunogold electron microscopy revealed that plectin fine threads tethered desmin intermediate filaments onto subsarcolemmal dense plaques overlying Z-lines and I-bands. These dense plaques were found to contain dystrophin and vinculin, and thus may be the structural basis of costameres. The in vivo association of plectin with desmin, (meta-)vinculin, dystrophin, and actin was demonstrated by immunoprecipitation experiments. Treatment of plectin immunoprecipitates with gelsolin reduced actin, dystrophin, and (meta-)vinculin but not desmin, implicating that subsarcolemmal actin could partly mediate the interaction between plectin and dystrophin or (meta-)vinculin. Altogether, our data suggest that plectin, along with desmin intermediate filaments, might serve a vital structural role in the stabilization of the subsarcolemmal cytoskeleton.  相似文献   

2.
Plectin is a multifunctional cytoskeletal linker protein with an intermediate filament-binding site and sequence elements with high homology to actin-binding domains. Mutations of the human plectin gene as well as the targeted inactivation of its murine analog cause a generalized blistering skin disorder and muscular dystrophy, thus implying its essential role in cells that are exposed to mechanical stress. In the present study we report the characterization of two new domain-specific plectin antibodies as well as ultrastructural localization of plectin in normal human skeletal muscle. Using immunogold electron microscopy, we localized plectin at three prominent sites: 1) Plectin is found at regularly spaced intervals along the cytoplasmic face of the plasma membrane. 2) It is distinctly localized at filamentous bridges between Z-lines of peripheral myofibrils and the sarcolemma and 3) at structures forming the intermyofibrillar scaffold. At the latter two locations, plectin and desmin were found to colocalize. Our ultrastructural analysis suggests that plectin may have a central role in the structural and functional organization of the intermediate filament cytoskeleton in mature human skeletal muscle.  相似文献   

3.
Plectin is a high molecular mass protein (ca 530 kDa) that binds actin, intermediate filaments, and microtubules. Mutations of the human plectin gene cause epidermolysis bullosa simplex with muscular dystrophy. In mature human skeletal muscle, plectin is localized between neighboring myofibrils and between myofibrils and the sarcolemma, both at the level of Z-discs. In the present study we have analyzed plectin expression patterns with emphasis on its sarcolemmal localization during human skeletal muscle differentiation in vitro. In myoblasts plectin showed a cytoplasmic intermediate filament-like distribution, whereas in myotubes plectin is also found at the level of the sarcolemma. In particular, in early myotubes a specific plectin isoform colocalizes with the costameric proteins vinculin and beta1D integrin in longitudinally orientated structures which increased in number and longitudinal extension upon further maturation. In mature myotubes processes perpendicular to the parallel system of longitudinal structures became apparent. Subsequent to the occurrence of spontaneous myofibrillar contractions, the number of longitudinal streaks decreased, and plectin and other costameric proteins were found in an orderly cross-striated sarcolemmal lattice overlying myofibrillar Z-discs. Our study demonstrates that plectin is preassembled together with vinculin and beta1D integrin into primary longitudinal adhesion structures. After the occurrence of spontaneous contractions, these structures reorient and mature costameres are assembled.  相似文献   

4.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

5.
Hemidesmosomes (HDs) are cellular junctions that anchor epithelial cells to the extracellular matrix (ECM) and are associated morphologically with the cytoskeleton. Hemidesmosomal molecular components include two proteins involved in linking intermediate filaments, HD1/plectin and BP230, and two transmembrane proteins, BP180 and the alpha6beta4 integrin, a laminin receptor. In cells lacking BP230 and BP180, HD1/plectin still associates with alpha6beta4 integrin, forming HD-like structures, called type II HDs. In the present study, we used an intestinal epithelial cell line that expresses HD1/plectin and the alpha6beta4 integrin to investigate the regulation of assembly of these proteins in type II HDs. These compounds were found to be clustered at sites of cell-ECM contact and their polarized localization was influenced by either cell confluency or extracellular matrix deposition. Conventional and immunoelectron microscopy showed that HD1/plectin and the beta4 integrin subunit are colocalized in an adhesion structure. Using cytoskeleton-disrupting drugs and confocal microscopy, we demonstrated that type II HDs are made up of numerous individual plaques whose assembly into a cluster requires actin filaments, but not microtubules.  相似文献   

6.
Smooth muscle basic calponin, a major actin-, tropomyosin-, and calmodulin-binding protein, has been examined for its ability to interact with desmin intermediate filaments from smooth muscle cells using sedimentation analysis, turbidity changes, chemical cross-linking, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS), and electron microscopic observations. Calponin interacted with desmin intermediate filaments in a concentration-dependent manner in vitro. The binding of calponin to desmin produced dense aggregates at 30 degrees C. The dense aggregates were observed by electron microscopy to be composed of large anisotropic bundles of desmin filaments, indicating that calponin forms bundles of desmin filaments. The addition of calmodulin or S100 to the mixture of calponin and desmin caused the removal of calponin from the desmin filaments and inhibited bundle formation in the presence of Ca(2+), but not in the presence of EGTA. Calponin-related proteins including G-actin, tropomyosin, and SM22, had little effect on the binding of calponin to desmin filaments, whereas tubulin weakly inhibited the binding. Desmin had little influence on the calponin-actin and calponin-tubulin interactions using the zero-length cross-linker, EDC. Domain mapping with chymotryptic digestion showed that the binding site of calponin resides within the central a-helical rod domain of the desmin molecule. The chemical cross-linked products of calponin and synthetic peptides (TQ27, TNEKVELQELNDRFANYIEKVRFLEQQ; EE24, EEELRELRRQVDALTGQRARVEVE) derived from the rod domain were detected by MALDI TOF/MS. Furthermore, the calponin-desmin interaction was significantly inhibited by the addition of EE24, but only slightly by TQ27. These results suggest that calponin may act as a cross-linking protein between desmin filaments as well as among intermediate filaments, microfilaments and microtubules in smooth muscle cells.  相似文献   

7.
Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.  相似文献   

8.
《The Journal of cell biology》1993,120(5):1159-1167
The sarcolemma of the smooth muscle cell displays two alternating structural domains in the electron microscope: densely-staining plaques that correspond to the adherens junctions and intervening uncoated regions which are rich in membrane invaginations, or caveolae. The adherens junctions serve as membrane anchorage sites for the actin cytoskeleton and are typically marked by antibodies to vinculin. We show here by immunofluorescence and immunoelectron microscopy that dystrophin is specifically localized in the caveolae-rich domains of the smooth muscle sarcolemma, together with the caveolae-associated molecule caveolin. Additional labeling experiments revealed that beta 1 integrin and fibronectin are confined to the adherens junctions, as indicated by their codistribution with vinculin and tensin. Laminin, on the other hand, is distributed around the entire cell perimeter. The sarcolemma of the smooth muscle cell is thus divided into two distinct domains, featuring different and mutually exclusive components. This simple bipartite domain organization contrasts with the more complex organization of the skeletal muscle sarcolemma: smooth muscle thus offers itself as a useful system for localizing, among other components, potential interacting partners of dystrophin.  相似文献   

9.
10.
Co-ordination of cytoskeletal networks and their dynamics is an essential feature of cell migration and cancer cell invasion. Plectin is a large cytolinker protein that influences tissue integrity, organisation of actin and intermediate filaments, and cell migration. Alternatively spliced plectin isoforms are targeted to different subcellular locations. Here, we show that plectin ablation by siRNA impaired migration, invasion and adhesion of SW480 colon carcinoma cells. A previously less well characterised plectin isoform, plectin-1k, co-localised with epithelial integrins, N-WASP, cortactin, and dynamin in podosome-like adhesions in invasive SW480 colon carcinoma cells. Transfection of alternative plectin N-terminal constructs demonstrated that the first exons of isoforms 1k, 1 and 1d can target the actin-binding domain of plectin to podosome-like adhesions. Finally, Plectin-1k N-terminus rescued adhesion site formation in plectin knock-down cells. Thus, plectin participates in actin assembly and invasiveness in carcinoma cells in an isoform-specific manner.  相似文献   

11.
We have previously demonstrated that alpha-smooth muscle (alpha-SM) actin is predominantly distributed in the central region and beta-non-muscle (beta-NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha-actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta-NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and alpha-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha-SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha-actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sarcomere-like units with alpha-actinin-rich dense bodies analogous to Z-lines, are the contractile structures of cultured SMCs that link to the network of vimentin-containing intermediate filaments through the dense bodies and dense plaques.  相似文献   

12.
《The Journal of cell biology》1996,134(5):1255-1270
Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration.  相似文献   

13.
Plectin, a large and widely expressed cytolinker protein, is composed of several subdomains that harbor binding sites for a variety of different interaction partners. A canonical actin-binding domain (ABD) comprising two calponin homology domains (CH1 and CH2) is located in proximity to its amino terminus. However, the ABD of plectin is unique among actin-binding proteins as it is expressed in the form of distinct, plectin isoform-specific versions. We have determined the three-dimensional structure of two distinct crystalline forms of one of its ABD versions (pleABD/2alpha) from mouse, to a resolution of 1.95 and 2.0 A. Comparison of pleABD/2alpha with the ABDs of fimbrin and utrophin revealed structural similarity between plectin and fimbrin, although the proteins share only low sequence identity. In fact, pleABD/2alpha has been found to have the same compact fold as the human plectin ABD and the fimbrin ABD, differing from the open conformation described for the ABDs of utrophin and dystrophin. Plectin harbors a specific binding site for intermediate filaments of various types within its carboxy-terminal R5 repeat domain. Our experiments revealed an additional vimentin-binding site of plectin, residing within the CH1 subdomain of its ABD. We show that vimentin binds to this site via the amino-terminal part of its rod domain. This additional amino-terminal intermediate filament protein binding site of plectin may have a function in intermediate filament dynamics and assembly, rather than in linking and stabilizing intermediate filament networks.  相似文献   

14.
Localization of filamin in smooth muscle   总被引:12,自引:8,他引:4       下载免费PDF全文
The distribution of contractile and cytoskeletal proteins in smooth muscle has been mapped by immunocytochemical methods, with special reference to the localization of the actin-binding protein, filamin. Immunolabeling of ultrathin sections of polyvinylalcohol-embedded smooth muscle distinguished two domains in the smooth muscle cell: (a) actomyosin domains, made up of continuous longitudinal arrays of actin and myosin filaments, and (b) longitudinal, fibrillar, intermediate filament domains, free of myosin but containing actin and alpha-actinin-rich dense bodies. Filamin was found to be localized specifically in the latter intermediate filament-actin domains, but was excluded from the core of the dense bodies. Filamin was also localized close to the cell border at the inner surface of the plasmalemma-associated plaques. In isolated cells the surface filamin label showed a rib-like distribution similar to that displayed by vinculin. It is speculated that the two domains distinguished in these studies may reflect the existence of two functionally distinct systems: an actomyosin system required for contraction and an intermediate filament-actin system, with associated gelation proteins, that is responsible, at least in part, for the slow relaxation and tone peculiar to smooth muscle.  相似文献   

15.
Mice lacking the gene encoding for the intermediate filament protein desmin have a surprisingly normal myofibrillar organization in skeletal muscle fibers, although myopathy develops in highly used muscles. In the present study we examined how synemin, paranemin, and plectin, three key cytoskeletal proteins related to desmin, are organized in normal and desmin knock-out (K/O) mice. We show that in wild-type mice, synemin, paranemin, and plectin were colocalized with desmin in Z-disc-associated striations and at the sarcolemma. All three proteins were also present at the myotendinous junctions and in the postsynaptic area of motor endplates. In the desmin K/O mice the distribution of plectin was unaffected, whereas synemin and paranemin were partly affected. The Z-disc-associated striations were in general no longer present in between the myofibrils. In contrast, at the myotendinous and neuromuscular junctions synemin and paranemin were still present. Our study shows that plectin differs from synemin and paranemin in its binding properties to the myofibrillar Z-discs and that the cytoskeleton in junctional areas is particularly complex in its organization.  相似文献   

16.
Dysfunction of plectin, a 500-kD cytolinker protein, leads to skin blistering and muscular dystrophy. Using conditional gene targeting in mice, we show that plectin deficiency results in progressive degenerative alterations in striated muscle, including aggregation and partial loss of intermediate filament (IF) networks, detachment of the contractile apparatus from the sarcolemma, profound changes in myofiber costameric cytoarchitecture, and decreased mitochondrial number and function. Analysis of newly generated plectin isoform-specific knockout mouse models revealed that IF aggregates accumulate in distinct cytoplasmic compartments, depending on which isoform is missing. Our data show that two major plectin isoforms expressed in muscle, plectin 1d and 1f, integrate fibers by specifically targeting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b establishes a linkage to mitochondria. Furthermore, disruption of Z-disk and costamere linkages leads to the pathological condition of epidermolysis bullosa with muscular dystrophy. Our findings establish plectin as the major organizer of desmin IFs in myofibers and provide new insights into plectin- and desmin-related muscular dystrophies.  相似文献   

17.
Plectin, a widespread and abundant cytoskeletal cross-linking protein, serves as a target for protein kinases throughout the cell cycle, without any significant variation in overall phosphorylation level. One of the various phosphorylation sites of the molecule was found to be phosphorylated preferentially during mitosis. By in vivo phosphorylation of ectopically expressed plectin domains in stably transfected Chinese hamster ovary cells, this site was mapped to the C-terminal repeat 6 domain of the polypeptide. The same site has been identified as an in vitro target for p34cdc2 kinase. Mitosis-specific phosphorylation of plectin was accompanied by a rearrangement of plectin structures, changing from a filamentous, largely vimentin-associated state in interphase to a diffuse vimentin-independent distribution in mitosis as visualized by immunofluorescence microscopy. Subcellular fractionation studies showed that in interphase cells up to 80% of cellular plectin was found associated with an insoluble cell fraction mostly consisting of intermediate filaments, while during mitosis the majority of plectin (> 75%) became soluble. Furthermore, phosphorylation of purified plectin by p34cdc2 kinase decreased plectin's ability to interact with preassembled vimentin filaments in vitro. Together, our data suggest that a mitosis-specific phosphorylation involving p34cdc2 kinase regulates plectin's cross-linking activities and association with intermediate filaments during the cell cycle.  相似文献   

18.
The sarcolemma of fast-twitch muscle is organized into "costameres," structures that are oriented transversely, over the Z and M lines of nearby myofibrils, and longitudinally, to form a rectilinear lattice. Here we examine the role of desmin, the major intermediate filament protein of muscle in organizing costameres. In control mouse muscle, desmin is enriched at the sarcolemmal domains that lie over nearby Z lines and that also contain beta-spectrin. In tibialis anterior muscle from mice lacking desmin due to homologous recombination, most costameres are lost. In myofibers from desmin -/- quadriceps, by contrast, most costameric structures are stable. Alternatively, Z line domains may be lost, whereas domains oriented longitudinally or lying over M lines are retained. Experiments with pan-specific antibodies to intermediate filament proteins and to cytokeratins suggest that control and desmin -/- muscles express similar levels of cytokeratins. Cytokeratins concentrate at the sarcolemma at all three domains of costameres when the latter are retained in desmin -/- muscle and redistribute with beta-spectrin at the sarcolemma when costameres are lost. Our results suggest that desmin associates with and selectively stabilizes the Z line domains of costameres, but that cytokeratins associate with all three domains of costameres, even in the absence of desmin.  相似文献   

19.
Occurrence and immunolocalization of plectin in tissues   总被引:23,自引:12,他引:11       下载免费PDF全文
Various tissues from rat were examined for the occurrence and cellular localization of plectin, a 300,000-dalton polypeptide component present in intermediate filament-enriched cytoskeletons prepared from cultured cells by treatment with nonionic detergent and high salt solution. The extraction of liver, heart, skeletal muscle, tongue, and urinary bladder with 1% Triton/0.6 M KCl yielded insoluble cell residues that contained polypeptides of Mr 300,000 in variable amounts. These high Mr polypeptide species and a few bands of slightly lower Mr (most likely proteolytic breakdown products) were shown to react with antibodies to rat glioma C6 cell plectin using immunoautoradiography and/or immunoprecipitation. By indirect immunofluorescence microscopy using frozen sections (4 micron) of stomach, kidney, small intestine, liver, uterus, urinary bladder, and heart, antigens reacting with antibodies to plectin were found in fibroblast, endothelial, smooth, skeletal, and cardiac muscle, nerve, and epithelial cells of various types. Depending on the cell type, staining was observed either throughout the cytoplasm, or primarily at the periphery of cells, or in both locations. In hepatocytes, besides granular staining at the cell periphery, conspicuous staining of junctions sealing bile canaliculi was seen. In cardiac muscle strong staining was seen at intercalated disks and, as in skeletal muscle, at Z-lines. In cross sections through smooth muscle, most strikingly of urinary bladder, antibodies to plectin specifically decorated regularly spaced, spot-like structures at the cell periphery. By immunoelectron microscopy using the peroxidase technique, antiplectin-reactive material was found along cell junctions of hepatocytes and was particularly enriched at desmosomal plaques and structures associated with their cytoplasmic surfaces. A specific immunoreaction with desmosomes was also evident in sections through tongue. In cardiac muscle, besides Z-lines, intercalated disks were reactive along almost their entire surface, suggesting that plectin was associated with the fascia adherens, desmosomes, and probably gap junctions. In smooth muscle cells, regularly spaced lateral densities probably representing myofilament attachment sites were immunoreactive with plectin antibodies. The results show that plectin is of widespread occurrence with regard to tissues and cell types. Furthermore, immunolocalization by light and electron microscopy at junctional sites of various cell types and at attachment sites of cytoplasmic filaments in epithelial and muscle cells suggests that plectin possibly plays a universal role in the formation of cell junctions and the anchorage of cytoplasmic filaments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号