首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picosecond time-resolved absorption spectroscopy and low-temperature studies have been undertaken in order to understand the nature of the intrinsic quantum yields and geminate recombination of carbon monoxide and oxygen to hemoglobin and myoglobin. We find that the photoproduct yields at 40 ps and long times (minutes) after photolysis at 8 K are similar; however, the yield of oxygen photoproducts is 0.4 +/- 0.1 while the yield of carbon monoxide photoproducts is 1.0 +/- 0.1 for both myoglobin and hemoglobin. Measurements in the Soret, near-infrared, and far-IR are used to quantitate the photoproduct yields. These results call into question previous cryogenic kinetic studies of O2 recombination. Significant subnanosecond geminate recombination is observed in oxyhemoglobin down to 150 K, while below 100 K this geminate recombination disappears. The lower photoproduct yields for oxyheme protein complexes can be attributed to both subnanosecond and subpicosecond recombination events which are ligand and protein dynamics dependent.  相似文献   

2.
Mini-myoglobin: preparation and reaction with oxygen and carbon monoxide   总被引:2,自引:0,他引:2  
A domain of 108 amino acid residues (32 to 139), obtained by digestion of horse heart apomyoglobin with clostripain, was found to bind protoheme in a 1 to 1 molar ratio. This domain is 33 amino acid residues larger than the protein segment encoded by the central exon in seal myoglobin. Flash photolysis experiments have shown that reconstituted "mini-myoglobin" is very similar to myoglobin in the combination reaction with carbon monoxide and with oxygen, and in the oxygen replacement reaction by carbon monoxide. These experiments provide for the first time direct evidence for the presence of a structural and functional domain, closely corresponding to the segment encoded by the central exon of the myoglobin gene, which contains the information for binding the natural heme and for maintaining the native folding typical of a respiratory protein.  相似文献   

3.
Recombination of carbon monoxide to myoglobin mutants YQR and YQRF was studied using transient infrared absorption spectroscopy and Fourier transform infrared-temperature derivative spectroscopy (FTIR-TDS). Photoproduct states B, C', C" and D associated with ligands residing in different protein cavities have been identified. After photolysis, ligands migrate to primary docking site B and subsequently rebind or escape to a secondary site (C) within the Xe4 cavity. For YQR, a global analysis of the isothermal rebinding kinetics below 160 K and the TDS data reveal a correlation between the enthalpy barriers governing the two processes. Above 120 K, a protein conformational change in both YQR and YQRF converts photoproduct C' into C" with markedly slowed kinetics. Above approximately 180 K, ligands migrate to the proximal Xe1 site (D) and also exit into the solvent, from where they rebind in a bimolecular reaction.  相似文献   

4.
We report the results of an extended molecular dynamics simulation on the migration of photodissociated carbon monoxide in wild-type sperm whale myoglobin. Our results allow following one possible ligand migration dynamics from the distal pocket to the Xe1 cavity via a path involving the other xenon binding cavities and momentarily two additional packing defects along the pathway. Comparison with recent time resolved structural data obtained by Laue crystallography with subnanosecond to millisecond resolution shows a more than satisfactory agreement. In fact, according to time resolved crystallography, CO, after photolysis, can occupy the Xe1 and Xe4 cavities. However, no information on the trajectory of the ligand from the distal pocket to the Xe1 is available. Our results clearly show one possible path within the protein. In addition, although our data refer to a single trajectory, the local dynamics of the ligand in each cavity is sufficiently equilibrated to obtain local structural and thermodynamic information not accessible to crystallography. In particular, we show that the CO motion and the protein fluctuations are strictly correlated: free energy calculations of the migration between adjacent cavities show that the migration is not a simple diffusion but is kinetically or thermodynamically driven by the collective motions of the protein; conversely, the protein fluctuations are influenced by the ligand in such a way that the opening/closure of the passage between adjacent cavities is strictly correlated to the presence of CO in its proximity. The compatibility between time resolved crystallographic experiments and molecular dynamics simulations paves the way to a deeper understanding of the role of internal dynamics and packing defects in the control of ligand binding in heme proteins.  相似文献   

5.
Here, we review the dominant aspects of protein dynamics as revealed by studying hemoproteins using the combination of laser flash photolysis, kinetic spectroscopy and low temperature. The first breakthrough was the finding that geminate ligand rebinding with myoglobin is highly non-exponential at temperature T<200 K, providing evidence for the trapping of a large number of protein statistical substates. Another major advance was the introduction of a "model free" approach to analyze polychromatic kinetics in terms of their rate spectrum rather than to fit the data to some arbitrarily predefined kinetic scheme. Kinetic processes are identified and quantified directly from the rate spectrum without a priori assumptions. In recent years, further progresses were achieved by using xenon gas as a soft external perturbing agent that competes with ligand rebinding pathways by occupying hydrophobic protein cavities. The first part of this paper introduces several basic principles that are spread throughout a vast literature. The second part describes the main conclusions regarding conformational relaxation and ligand migration in hemoproteins obtained by combining these approaches.  相似文献   

6.
7.
The glbN gene of the cyanobacterium Nostoc commune UTEX 584 encodes a hemoprotein, named cyanoglobin, that has high oxygen affinity. The basis for the high oxygen affinity of cyanoglobin was investigated through kinetic studies that utilized stopped-flow spectrophotometry and flash photolysis. Association and dissociation rate constants were measured at 20 degrees C for oxygen, carbon monoxide, nitric oxide, and methyl and ethyl isocyanides. The association rate constants for the binding of these five ligands to cyanoglobin are the highest reported for any naturally occurring hemoglobin, suggesting an unhindered and apolar ligand binding pocket. Cyanoglobin also shows high rates of autoxidation and hemin loss, indicating that the prosthetic group is readily accessible to solvent. The ligand binding behavior of cyanoglobin was more similar to that of leghemoglobin a than to that of sperm whale myoglobin. Collectively, the data support the model of cyanoglobin function described by Hill et al. [(1996) J. Bacteriol. 178, 6587-6598], in which cyanoglobin sequesters oxygen, and presents it to, or is a part of, a terminal cytochrome oxidase complex in Nostoc commune UTEX 584 under microaerobic conditions, when nitrogen fixation, and thus ATP demand, is maximal.  相似文献   

8.
In order to study the effects of chemical modifications of the vinyl groups of heme on oxygen and carbon monoxide binding to myoglobin, apomyoglobins from horse heart were reconstituted with six different hemins with various side chains. Laser flash photolysis experiments of these reconstituted myoglobins showed that the combination rate constants for oxygen (k') and carbon monoxide (l') were closely related to the electron-attractive properties of the side chains. The k' values obtained in 0.1 M potassium phosphate buffer, pH 7.0, at 20 degrees were 0.83 (meso-), 2.4 (deutero-), 1.1 (reconstituted proto-), 1.2 (native proto-), 1.5 (2-formyl-4-vinyl-), 1.9 (2-vinyl-4-formyl-), and 2.7 X 10(7) M-1 S-1 (2,4-diformylmyoglobins), and the corresponding l' values were 2.8, 18, 4.8, 5.1, 7.1, 15, and 35 X 10(5) M-1 S-1, respectively. These rate constants tend to increase as the electron-withdrawing power of the side chains increases, indicating that reduced electron density of the iron atom of heme in myoglobin favors the combination reaction for both oxygen and carbon monoxide. Equilibrium constants (L) between carbon monoxide and various myoglobins were also determined by measuring the partition coefficients (M) between oxygen and carbon monoxide for the myoglobins, and were also found to be closely related to the electronic properties (pK3 of porphyrin) of the heme side chains. The equilibrium association constants for carbon monoxide thus obtained increased with a decrease in pK3 value of the porphyrin. This order was completely opposite to the case of the oxygen binding reaction. The dissociation rate constants for oxygen (k) and carbon monoxide (l) were calculated from the equilibrium and the combination rate constants. The dissociation rate constants showed a similar characteristic to the combination rate constants and increased with the increase in electron attractivity of heme side chains. The concomitant increase in both the combination and dissociation rate constants with increase in electronegativity of the iron atom suggests that these reactions have different rate determining steps, although such a reaction process is contradictory to the generally accepted concept that in a reversible reaction, both on and off reactions proceed through the same transition state. In the on reaction sigma bond formation appears to be dominant, while in the off reaction eta bond break-up is more important.  相似文献   

9.
Geminate recombination of n-butyl isocyanide to myoglobin   总被引:1,自引:0,他引:1  
Transient optical absorption spectra of myoglobin were measured following photolysis of the n-butyl isocyanide complex with 10-ns laser pulses at room temperature. The data were analyzed by using singular value decomposition to give the kinetics of ligand rebinding and spectral changes. Geminate recombination phases were observed at 30 ns and 1 microsecond following photodissociation. These processes were accompanied by simultaneous changes in the shape of the Soret band which indicate changes in protein conformation. These spectral changes are not present in the geminate recombination of photolyzed complexes of myoglobin with the diatomic ligands oxygen and carbon monoxide. This difference in behavior, as well as the slower overall association rate of n-butyl isocyanide to myoglobin, can be rationalized as arising from distortion of the protein structure by the larger isocyanide ligand along the binding pathway.  相似文献   

10.
The milli-, micro-, and nanosecond rebinding kinetics of oxygen and carbon monoxide with myoglobin (Mb) from sperm whale, horse, and dog were studied as a function of pressure up to 2 kbar by means of a high pressure laser photolysis apparatus. The results were analyzed quantitatively in terms of a three-step reaction scheme, and activation volumes (delta V not equal to) for each step were determined from the pressure dependence of the rate constants. In the case of CO binding to Mb, the overall reaction volume delta V not equal to was negative, resulting from the rate-determining bond formation step. Activation volumes for O2 to the iron binding step as well as for the O2 diffusion step within the protein matrix were quite different among three Mb species, and it was suggested that activation volumes are very sensitive to the amino acid constituents around the ligand path channel.  相似文献   

11.
Fish myoglobins are structurally distinct from the previously characterized mammalian myoglobins. Teleost fishes express generally lower levels of myoglobin than those found in mammals. Although the oxygen binding affinity is essentially the same as mammalian myoglobins, oxygen dissociation rates and carbon monoxide combination rates of the teleost myoglobins studied are significantly faster. Thus, the kinetic parameters of myoglobin from two Antarctic teleost species, measured close to their body temperature of −1°C, are comparable to those of mammalian myoglobins with higher body temperatures. These data suggest myoglobins from Antarctic teleosts may function at extreme environmental temperatures.  相似文献   

12.
Mini-myoglobin. The structural significance of haem-ligand interactions   总被引:3,自引:0,他引:3  
The properties of purified mini-myoglobin, the fragment 32-139 of horse heart myoglobin reconstituted with protohaem, have been investigated from a structural and functional view point. The recovery of secondary structure observed in the carbon monoxide derivative of mini-myoglobin, as shown by circular dichroism, and the overall similarity of the haem pocket to that of myoglobin, as deduced from the fluorescence properties of the complex with 1-anilino-8-naphthalene sulphonate, indicate that, in the presence of the constraints imposed by the haem and its ligands, the miniprotein reacquires a conformation close to that of native myoglobin. These spectroscopic data parallel the conclusions drawn from the results of ligand combination and dissociation kinetics; stopped-flow experiments indicate that carbon monoxide and oxygen bind to mini-myoglobin with rates almost identical with those of myoglobin itself. The significance of mini-myoglobin as a model of an oxygen-carrying protein, with some of the expected functional characteristics of an ancestor haemoprotein, is discussed, with reference to the mosaic structure of the myoglobin gene and the role of different exons in the evolution of proteins.  相似文献   

13.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

14.
It is becoming increasingly apparent that hydrophobic cavities (also referred to as xenon cavities) within proteins have significant functional implications. The potential functional role of these cavities in modulating the internal dynamics of carbon monoxide in myoglobin (Mb) is explored in the present study by using glassy matrices derived from trehalose to limit protein dynamics and to eliminate ligand exchange between the solvent and the protein. By varying the temperature (-15 to 65 degrees C) and humidity for samples of carbonmonoxy myoglobin embedded in trehalose-glass, it is possible to observe a hierarchy of distinct geminate recombination phases that extend from nanosecond to almost seconds that can be directly associated with rebinding from specific hydrophobic cavities. The use of mutant forms of Mb reveals the role of key residues in modulating ligand access between these cavities and the distal hemepocket.  相似文献   

15.
The kinetics of the reaction with oxygen and carbon monoxide of the homodimeric hemoglobin from the bivalve mollusc Scapharca inaequivalvis has been extensively investigated by flash and dye-laser photolysis, temperature jump relaxation, and stopped flow methods. The results indicate that cooperativity in ligand binding, already observed for oxygen at equilibrium, finds its kinetic counterpart in a large decrease of the oxygen dissociation velocity in the second step of the binding reaction. In the case of carbon monoxide, cooperativity is clearly evident in the increase of the combination velocity constant as the reaction proceeds. Therefore, the ligand-binding kinetics of this dimeric hemoglobin shows the characteristic features of the corresponding reactions of tetrameric hemoglobins. Analysis of the data in terms of the allosteric model proposed by Monod et al. (Monod, J., Wyman, J., and Changeux, J. P. (1965) J. Mol. Biol. 12, 88-118) has shown that the values of the allosteric parameters cannot be fixed uniquely for a dimeric hemoglobin. The rapid changes in absorbance observed at the isosbestic points of unliganded and liganded hemoglobin following laser photolysis provided a value of 7 X 10(4) S-1 at 20 degrees C for the rate of the ligand-free quarternary conformational change, postulated on the basis of cooperative ligand binding. Comparison of the rapid absorbance changes observed during ligand rebinding in this hemoglobin with those observed in tuna hemoglobin indicate that, at full photolysis, binding to the T state is followed by further binding and conversion to the liganded R state; at partial photolysis, population of the liganded T state occurs immediately and is followed by a decay to the liganded R state upon further ligand binding. These new results, in conjunction with previous equilibrium data on the same system, show unequivocally that the presence of two different types of chain is not an absolute prerequisite for cooperativity in hemoglobins, contrary to currently accepted ideas.  相似文献   

16.
In this work we report the thermal behavior (10-300 K) of the Soret band lineshape of deoxy and carbonmonoxy derivatives of Asian elephant (Elephas maximus) and horse myoglobins together with their carbon monoxide recombination kinetics after flash photolysis; the results are compared to analogous data relative to sperm whale myoglobin. The Soret band profile is modeled as a Voigt function that accounts for the coupling with high and low frequency vibrational modes, while inhomogeneous broadening is taken into account with suitable distributions of purely electronic transition frequencies. This analysis makes it possible to isolate the various contributions to the overall lineshape that; in turn, give information on structural and dynamic properties of the systems studied. The optical spectroscopy data point out sizable differences between elephant myoglobin on one hand and horse and sperm whale myoglobins on the other. These differences, more pronounced in deoxy derivatives, involve both the structure and dynamics of the heme pocket; in particular, elephant myoglobin appears to be characterized by larger anharmonic contributions to soft modes than the other two proteins. Flash photolysis data are analyzed as sums of kinetic processes with temperature-dependent fractional amplitudes, characterized by discrete pre-exponentials and either discrete or distributed activation enthalpies. In the whole temperature range investigated the behavior of elephant myoglobin appears to be more complex than that of horse and sperm whale myoglobins, which is in agreement with the increased anharmonic contributions to soft modes found in the former protein. Thus, to satisfactorily fit the time courses for CO recombination to elephant myoglobin five distinct processes are needed, only one of which is populated over the whole temperature range investigated. The remarkable convergence and complementarity between optical spectroscopy and flash photolysis data confirms the utility of combining these two experimental techniques in order to gain new and deeper insights into the functional relevance of protein fluctuations.  相似文献   

17.
Bacterial hemoglobins and flavohemoglobins share a common globin fold but differ otherwise in structural and functional aspects. The bases of these differences were investigated through kinetic studies on oxygen, carbon monoxide, and nitric oxide binding. The novel bacterial hemoglobins from Clostridium perfringens and Campylobacter jejuni and the flavohemoglobins from Bacillus subtilis and Salmonella enterica serovar Typhi have been analyzed. Examination of the biochemical and ligand binding properties of these proteins shows a clear distinction between the two groups. Flavohemoglobins show a much greater tendency to autoxidation compared to bacterial hemoglobins. The differences in affinity for oxygen, carbon monoxide, and nitric oxide between bacterial hemoglobins and flavohemoglobins are mainly due to differences in the association rate constants. The second-order rate constants for oxygen and carbon monoxide binding to bacterial hemoglobins are severalfold higher than those for flavohemoglobins. A similar trend is observed for NO association with the oxidized iron(III) form of the proteins. No major differences are observed among the values obtained for the dissociation rate constants for the two groups of bacterial proteins studied, and these constants are all rather similar to those for myoglobin. Taken together, our data suggest that differences exist between the mechanisms of ligand binding to bacterial hemoglobins and flavohemoglobins, suggesting different functions in the cell.  相似文献   

18.
We have measured spectral and kinetic differences in protoheme, sperm whale or horse heart myoglobin and human hemoglobin following photodissociation induced by optical pulses of 80 fs duration. Full ligation was performed with oxygen or carbon monoxide. Femtosecond kinetics and transient difference spectra revealed the appearance of a deoxy species with tau approximately equal to 250-300 fs. The transient deoxy species in myoglobin and hemoglobin evidenced a 3-4 nm red shift of their delta A spectra compared with the equilibrium delta A spectrum. This shift was not observed after photodissociation of the carbon monoxide liganded protoheme. We proposed that the 250 fs time constant corresponding to the appearance of the deoxy-like species is related to the displacement of the ferrous iron out of the heme plane. Consequently, the small red shift of the delta A spectra observed in photodissociated hemoproteins may be tentatively attributed to changes in the vibrational modes of either the proximal histidine-Fe2+ bond and/or of the N4 porph-Fe-N epsilon His (F8) bent.  相似文献   

19.
The Antarctic icefish Chaenocephalus aceratus lacks the globins common to most vertebrates, hemoglobin and myoglobin, but has retained neuroglobin in the brain. This conserved globin has been cloned, over-expressed and purified. To highlight similarities and differences, the structural features of the neuroglobin of this colourless-blooded fish were compared with those of the well characterised human neuroglobin as well as with the neuroglobin from the retina of the red blooded, hemoglobin and myoglobin-containing, closely related Antarctic notothenioid Dissostichus mawsoni. A detailed structural and functional analysis of the two Antarctic fish neuroglobins was carried out by UV-visible and Resonance Raman spectroscopies, molecular dynamics simulations and laser-flash photolysis. Similar to the human protein, Antarctic fish neuroglobins can reversibly bind oxygen and CO in the Fe2+ form, and show six-coordination by distal His in the absence of exogenous ligands. A very large and structured internal cavity, with discrete docking sites, was identified in the modelled three-dimensional structures of the Antarctic neuroglobins. Estimate of the free-energy barriers from laser-flash photolysis and Implicit Ligand Sampling showed that the cavities are accessible from the solvent in both proteins.Comparison of structural and functional properties suggests that the two Antarctic fish neuroglobins most likely preserved and possibly improved the function recently proposed for human neuroglobin in ligand multichemistry. Despite subtle differences, the adaptation of Antarctic fish neuroglobins does not seem to parallel the dramatic adaptation of the oxygen carrying globins, hemoglobin and myoglobin, in the same organisms.  相似文献   

20.
The dynamics of the enthalpy and volume changes produced in the photodissociation of carbon monoxide from sperm whale myoglobin is investigated by time-resolved photoacoustic calorimetry. The enthalpy and volume changes for the formation of the geminate pair, which occurs within 50 ns of photolysis, are delta H = -2.2 +/- 2.8 kcal/mol and delta V = -10.0 +/- 1.0 mL/mol relative to carboxymyoglobin. The enthalpy and volume changes associated with formation of deoxymyoglobin and solvated carbon monoxide, formed with a half-life of 702 +/- 31 ns at 20 degrees C, are delta H = 14.6 +/- 3.4 kcal/mol and delta V = 5.8 +/- 1.0 mL/mol relative to carboxymyoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号