首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NS3 protein of dengue virus type 2 has a serine protease domain within the N-terminal 180 residues. NS2B is required for NS3 to form an active protease involved in processing of the viral polyprotein precursor. The region carboxy terminal to the protease domain has conserved motifs present in several viral RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicases. To define the functional domains of protease and NTPase/RNA helicase activities of NS3, full-length and amino-terminal deletion mutants of NS3 were expressed in Escherichia coli and purified. Deletion of 160 N-terminal residues of NS3 (as in NS3del.2) had no detrimental effect on the basal and RNA-stimulated NTPase as well as RNA helicase activities. However, mutagenesis of the conserved P-loop motif of the RNA helicase domain (K199E) resulted in loss of ATPase activity. The RNA-stimulated NTPase activity was significantly affected by deletion of 20 amino acid residues from the N terminus or by substitutions of the cluster of basic residues, 184RKRK-->QNGN, of NS3del.2, although both mutant proteins retained the conserved RNA helicase motifs. Furthermore, the minimal NS3 protease domain, required for cleavage of the 2B-3 site, was precisely defined to be 167 residues, using the in vitro processing of NS2B-NS3 precursors. Our results reveal that the functional domains required for serine protease and RNA-stimulated NTPase activities map within the region between amino acid residues 160 and 180 of NS3 protein and that a novel motif, the cluster of basic residues 184RKRK, plays an important role for the RNA-stimulated NTPase activity.  相似文献   

2.
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50= 19.8 microm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 microm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 microm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.  相似文献   

3.
4.
NifU is a homodimeric modular protein comprising N- and C-terminal domains and a central domain with a redox-active [2Fe-2S](2+,+) cluster. It plays a crucial role as a scaffold protein for the assembly of the Fe-S clusters required for the maturation of nif-specific Fe-S proteins. In this work, the time course and products of in vitro NifS-mediated iron-sulfur cluster assembly on full-length NifU and truncated forms involving only the N-terminal domain or the central and C-terminal domains have been investigated using UV-vis absorption and M?ssbauer spectroscopies, coupled with analytical studies. The results demonstrate sequential assembly of labile [2Fe-2S](2+) and [4Fe-4S](2+) clusters in the U-type N-terminal scaffolding domain and the assembly of [4Fe-4S](2+) clusters in the Nfu-type C-terminal scaffolding domain. Both scaffolding domains of NifU are shown to be competent for in vitro maturation of nitrogenase component proteins, as evidenced by rapid transfer of [4Fe-4S](2+) clusters preassembled on either the N- or C-terminal domains to the apo nitrogenase Fe protein. Mutagenesis studies indicate that a conserved aspartate (Asp37) plays a critical role in mediating cluster transfer. The assembly and transfer of clusters on NifU are compared with results reported for U- and Nfu-type scaffold proteins, and the need for two functional Fe-S cluster scaffolding domains on NifU is discussed.  相似文献   

5.
The NifU protein is a homodimer that is proposed to provide a molecular scaffold for the assembly of [Fe-S] clusters uniquely destined for the maturation of the nitrogenase catalytic components. There are three domains contained within NifU, with the N-terminal domain exhibiting a high degree of primary sequence similarity to a related family of [Fe-S] cluster biosynthetic scaffolds designated IscU. The C-terminal domain of NifU exhibits sequence similarity to a second family of proposed [Fe-S] cluster biosynthetic scaffolds designated Nfu. Genetic experiments described here involving amino acid substitutions within the N-terminal and C-terminal domains of NifU indicate that both domains can separately participate in nitrogenase-specific [Fe-S] cluster formation, although the N-terminal domain appears to have the dominant function. These in vivo experiments were supported by in vitro [Fe-S] cluster assembly and transfer experiments involving the activation of an apo-form of the nitrogenase Fe protein.  相似文献   

6.
7.
8.
9.
Photoreceptor cGMP phosphodiesterase (PDE6) is the central enzyme in the visual transduction cascade. The PDE6 catalytic subunit contains a catalytic domain and regulatory GAF domains. Unlike most GAF domain-containing cyclic nucleotide phosphodiesterases, little is known about direct allosteric communication of PDE6. In this study, we demonstrate for the first time direct, inter-domain allosteric communication between the GAF and catalytic domains in PDE6. The binding affinity of PDE6 for pharmacological inhibitors or for the C-terminal region of the inhibitory gamma subunit (Pgamma), known to directly inhibit PDE6 catalysis, was increased approximately 2-fold by ligands binding to the GAF domain. Binding of the N-terminal half of Pgamma to the GAF domains suffices to induce this allosteric effect. Allosteric communication between GAF and catalytic domains is reciprocal, in that drug binding to the catalytic domain slowed cGMP dissociation from the GAF domain. Although cGMP hydrolysis was not affected by binding of Pgamma1-60, Pgamma lacking its last seven amino acids decreased the Michaelis constant of PDE6 by 2.5-fold. Pgamma1-60 binding to the GAF domain increased vardenafil but not cGMP affinity, indicating that substrate- and inhibitor-binding sites do not totally overlap. In addition, prolonged incubation of PDE6 with vardenafil or sildenafil (but not 3-isobutyl-1-methylxanthine and zaprinast) induced a distinct conformational change in the catalytic domain without affecting the binding properties of the GAF domains. We conclude that although Pgamma-mediated regulation plays the dominant role in visual excitation, the direct, inter-domain allosteric regulation described in this study may play a feedback role in light adaptational processes during phototransduction.  相似文献   

10.
Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular nuclear Overhauser effects. Comparison with GAF domains from PDE2A and adenylyl cyclase cyaB2 reveals a conserved overall domain fold of a six-stranded beta-sheet and four alpha-helices that form a well defined cGMP binding pocket. However, the nucleotide coordination is distinct with a series of altered binding contacts. The structure suggests that nucleotide binding specificity is provided by Asp-196, which is positioned to form two hydrogen bonds to the guanine ring of cGMP. An alanine mutation of Asp-196 disrupts cGMP binding and increases cAMP affinity in constructs containing only GAF A causing an altered cAMP-bound structural conformation. NMR studies on the tandem GAF domains reveal a flexible GAF A domain in the absence of cGMP, and indicate a large conformational change upon ligand binding. Furthermore, we identify a region of approximately 20 residues directly N-terminal of GAF A as critical for tight dimerization of the tandem GAF domains. The features of the PDE5 regulatory domain revealed here provide an initial structural basis for future investigations of the regulatory mechanism of PDE5 and the design of GAF-specific regulators of PDE5 function.  相似文献   

11.
12.
The Na(+)-translocating NADH:quinone oxidoreductase from Vibrio cholerae is a six subunit enzyme containing four flavins and a single motif for the binding of a Fe-S cluster on its NqrF subunit. This study reports the production of a soluble variant of NqrF (NqrF') and its individual flavin and Fe-S-carrying domains using V. cholerae or Escherichia coli as expression hosts. NqrF' and the flavin domain each contain 1 mol of FAD/mol of enzyme and exhibit high NADH oxidation activity (20,000 micromol min(-1) mg(-1)). EPR, visible absorption, and circular dichroism spectroscopy indicate that the Fe-S cluster in NqrF' and its Fe-S domain is related to 2Fe ferredoxins of the vertebrate-type. The addition of NADH to NqrF' results in the formation of a neutral flavosemiquinone and a partial reduction of the Fe-S cluster. The NqrF subunit harbors the active site of NADH oxidation and acts as a converter between the hydride donor NADH and subsequent one-electron reaction steps in the Na(+)-translocating NADH:quinone oxidoreductase complex. The observed electron transfer NADH --> FAD --> [2Fe-2S] in NqrF requires positioning of the FAD and the Fe-S cluster in close proximity in accordance with a structural model of the subunit.  相似文献   

13.
Dna2 nuclease/helicase is a multitasking protein involved in DNA replication and recombinational repair, and it is important for preservation of genomic stability. Yeast Dna2 protein contains a conserved putative Fe-S (iron-sulfur) cluster signature motif spanning the nuclease active site. We show that this motif is indeed an Fe-S cluster domain. Mutation of cysteines involved in metal coordination greatly reduces not just the nuclease activity but also the ATPase activity of Dna2, suggesting that the nuclease and helicase activities are coupled. The affinity for DNA is not significantly reduced, but binding mode in the C to A mutants is altered. Remarkably, a point mutation (P504S), proximal to the Fe-S cluster domain, which renders cells temperature sensitive, closely mimics the global defects of the Fe-S cluster mutation itself. This points to an important role of this conserved proline residue in stabilizing the Fe-S cluster. The C to A mutants are deficient in DNA replication and repair in vivo, and, strikingly, the degree to which they are defective correlates directly with degree of loss of enzymatic activity. Taken together with previous results showing that mutations in the ATP domain affect nuclease function, our results provide a new mechanistic paradigm for coupling between nuclease and helicase modules fused in the same polypeptide.  相似文献   

14.
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif. tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tBP-80 contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR. These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.  相似文献   

15.
GAF domains represent one of the largest families of small-molecule binding units present in nature. The first mammalian GAF domains discovered were the cGMP-binding regulatory domains of several cyclic nucleotide phosphodiesterases (PDEs). The crystal structure of the PDE2A GAF domains has provided our first look at the architecture of the binding site for the second messenger cGMP. The topology of this site differs greatly from all other previously determined cyclic nucleotide binding sites. In PDE2A, cGMP binds to a well-defined pocket in one of the two GAF domains that is analogous to the ligand-binding pocket of the distantly related PAS domains of photoactive yellow protein and FixL. The consensus cGMP-binding motif suggests strongly that only certain GAF domains will bind cGMP. Although the detailed mechanism for how cGMP binding to the GAF domain regulates catalysis remains to be determined, recent data from a GAF domain-containing cAMP-stimulated adenylyl cyclase from Anabaena suggest a mechanism conserved across two billion years of evolution. Because of their unique ligand-binding topologies, the GAF domains of PDEs are likely to offer good new targets for rational drug design.  相似文献   

16.
17.
18.
19.
The majority of the Mycobacterium tuberculosis response to hypoxia and nitric oxide is through the DosRS (DevRS) two-component regulatory system. The N-terminal input domain of the DosS sensor contains two GAF domains. We demonstrate here that the proximal GAF domain binds haem, and identified histidine 149 of DosS as critical to haem-binding; the location of this histidine residue is similar to the cGMP-binding site in a crystal structure of cyclic nucleotide phosphodiesterase 2A. GAF domains are frequently involved in binding cyclic nucleotides, but this is the first GAF domain to be identified that binds haem. In contrast, PAS domains (similar to GAF domains in structure but not primary sequence) frequently use haem cofactors, and these findings further illustrate how the functions of these domains overlap. We propose that the activation of the DosS sensor is controlled through the haem binding of molecular oxygen or nitric oxide.  相似文献   

20.
In photosynthetic eukaryotes assembly components of iron-sulfur (Fe-S) cofactors have been studied in plastids and mitochondria, but how cytosolic and nuclear Fe-S cluster proteins are assembled is not known. We have characterized a plant P loop NTPase with sequence similarity to Nbp35 of yeast and mammals, a protein of the cytosolic Cfd1-Nbp35 complex mediating Fe-S cluster assembly. Genome analysis revealed that NBP35 is conserved in the green lineage but that CFD1 is absent. Moreover, plant and algal NBP35 proteins lack the characteristic CXXC motif in the C terminus, thought to be required for Fe-S cluster binding. Nevertheless, chemical reconstitution and spectroscopy showed that Arabidopsis (At) NBP35 bound a [4Fe-4S] cluster in the C terminus as well as a stable [4Fe-4S] cluster in the N terminus. Holo-AtNBP35 was able to transfer an Fe-S cluster to an apoprotein in vitro. When expressed in yeast, AtNBP35 bound 55Fe dependent on the cysteine desulfurase Nfs1 and was able to partially rescue the growth of a cfd1 mutant but not of an nbp35 mutant. The AtNBP35 gene is constitutively expressed in planta, and its disruption was associated with an arrest of embryo development. These results show that despite considerable divergence from the yeast Cfd1-Nbp35 Fe-S scaffold complex, AtNBP35 has retained similar Fe-S cluster binding and transfer properties and performs an essential function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号