首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum levels of growth hormone (GH)-dependent peptides could provide important and valuable measures of GH sensitivity and, potentially, responsiveness. In normal individuals, serum insulin-like growth factor I (IGF-I) concentrations are dependent on the dose of GH given, with IGF-I responsiveness not decreasing with age. Individuals heterozygous for the E180 GH receptor (GHR) splice mutation have normal IGF-I generation, but those homozygous for the E180 splice mutation have very low basal and stimulated IGF-I concentrations. Similar results are observed for the serum IGF-binding protein 3 (IGFBP-3) response to GH, with a correlation between changes in serum concentrations of IGF-I and changes in IGFBP-3 in normal, heterozygotic, GH-insensitive and GH-deficient participants. In individuals with the E180 splice mutation, IGF-I and IGFBP-3 tests show sensitivity and specificity for detecting GH insensitivity (GHI). In children with idiopathic short stature, it appears that some individuals have selective resistance to GH, with their ability to generate IGF-I more impaired than their ability to generate other GH-dependent peptides. This heterogeneous group may require individualization of GH dosage. IGF generation tests remain the best short-term, in vivo test for classic GHI, although diagnostic tests will undoubtedly require further modification to identify milder pathophysiologic abnormalities.  相似文献   

2.
BACKGROUND/AIM: Insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) generation tests are both sensitive and specific measures of growth hormone (GH) sensitivity. Recently, the question of reproducibility of IGF generation tests has been raised. We report our analysis of the correlation of low- and high-dose GH IGF-I and IGFBP-3 generation tests among patients with GH deficiency, GH insensitivity, and idiopathic short stature. METHODS: A total of 198 subjects were randomized to either high- or low-dose GH for 7 days; the alternate dose was received after a 2-week washout period. Samples were collected at baseline and on days 5 and 8 of GH administration. RESULTS: The serum concentrations of IGF-I and IGFBP-3 correlated significantly from one test to the other, regardless of the diagnosis. In normal subjects and patients with GH insensitivity and GH deficiency, the delta over baseline in IGF-I and IGFBP-3 in the low-dose test was highly predictive of the delta values in the high-dose test. The delta correlation was greatly diminished, however, in the patient population having idiopathic short stature. CONCLUSIONS: These observations support partial GH insensitivity effecting IGF-I generation specifically, as a possible etiology for idiopathic short stature, and thus such patients may warrant appropriate biochemical and/or molecular evaluation for partial GH insensitivity.  相似文献   

3.
The cloning of a putative growth hormone receptor (GH-R) cDNA has opened new approaches for the understanding of the molecular basis of GH insensitivity in humans. This molecule belongs to a new class of transmembrane receptors including prolactin, granulocyte-macrophage colony stimulating factor, erythropoietin and some interleukin receptors. Although the domains responsible for signal transduction have not yet been identified, the molecular study of a GH-resistance syndrome described by Laron et al. should provide insight into the structure-function relationships of the GH-R and related receptors. This autosomal recessive disorder is characterized by very low serum levels of Insulin-Like Growth Factor I (IGF-I), despite increased secretion of GH with normal activity. Two approaches can be used to test the involvement of the GH-R in this syndrome. The first one, which is indirect, is performed through linkage analysis between GH-R and Laron phenotype; this allowed us to incriminate the GR-R gene in this syndrome. The second approach consists in the identification of molecular defects in the GH-R gene of patients with Laron syndrome; this allowed the detection of a partial gene deletion and different point mutations. The short stature of the Pygmee population could be related to the Laron syndrome because individuals from this population are also resistant to GH therapy. Therefore, it seems interesting to search for molecular variations of the GH-R gene in this population. Nevertheless, preliminary results indicate that the GH-R gene is not directly involved in this particular short stature condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
AIM: This study was designed to investigate whether determination of plasma insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) levels could be of benefit in the evaluation of childhood growth hormone (GH) deficiency (GHD). METHOD: A retrospective analysis was performed on 91 prepubertal children referred for investigation of short stature. Maximal GH levels in plasma after provocative stimuli were between 1.0 and 93.0 mU/l, 6 subjects exhibiting peak values of <5 mU/l. Initially a GH peak of 20 mU/l was used as a cutoff limit to define GHD and idiopathic short stature (ISS) patients. The results of GH provocative tests were compared to age- and gender-based standard deviation scores (SDS) of plasma IGFBP-2, IGF-I, IGFBP-3 and the molar ratios of the latter two to IGFBP-2. The respective normative range values for these parameters were determined in plasma samples from 353 healthy children (i.e. 171 girls, 182 boys). RESULTS: Circulating IGFBP-2 levels did not correlate with height SDS, height velocity SDS or the peak GH levels after provocative stimuli. A weak negative relationship was found between IGFBP-2 and IGF-I. Plasma levels of IGFBP-2 in GHD patients were higher than those of ISS children, who had normal levels. Although at the optimal cutoff point of -0.71 SDS 91.5% of the GHD patients were identified correctly, a substantial proportion (71.9%) of the ISS subjects also had IGFBP-2 levels above this limit. The use of various combinations of IGFBP-2, IGF-I, IGFBP-3 and the derived ratios only slightly improved the diagnostic efficiency as compared to the results of the individual tests. Neither IGFBP-2 nor the IGFBP-3/IGFBP-2 and IGF-I/IGFBP-2 ratios were found to be related to the short- (1 year) or long-term (3 years) growth response to GH therapy. CONCLUSION: It is concluded that none of the tests investigated, either alone or in various combinations, are reliable in either predicting the peak GH level after provocative stimuli in prepubertal short children or in predicting their growth response to GH.  相似文献   

5.
OBJECTIVE: To describe in a 5-year-old Caucasian male with mitochondrial cytopathy, a biochemical growth hormone (GH) deficiency associated with normal GH biological activity as evaluated by Nb2 cell bioassay and normal serum IGF-I and IGFBP3 values increasing slightly after GH administration. METHOD: Serum GH concentrations were measured with a commercial immunofluorometric assay and with a biological assay, which uses the Nb2 cell line. Serum IGF-I and IGFBP3 concentrations were measured with RIA. RESULTS: The GH-supplementary therapy was initially effective in terms of growth gain, but no therapeutic benefit was observed over a long period of time. CONCLUSION: In patients suffering from mitochondrial cytopathy, short stature seems to be attributed more to a disease-related inadequate protein substrate than to the non-classical GH deficiency.  相似文献   

6.
7.
8.
The Short Stature Homeobox-containing Gene SHOX was identified as the genetic cause of the short stature phenotype in patients with Turner Syndrome and in certain patients with idiopathic short stature. Shortly after, SHOX mutations were also associated with the growth failure and skeletal deformities seen in patients with Léri - Weill dyschondrosteosis and Langer mesomelic dysplasia. Today it is estimated that SHOX mutations occur with an incidence of roughly 1:1,000 in newborns, making mutations of this gene one of the most common genetic defects leading to growth failure in humans. This review summarises the involvement of SHOX in several short stature syndromes and describes recent advances in our understanding of SHOX functions and regulation. We also discuss the current evidence in the literature that points to a role of this protein in growth and bone development. These studies have improved our knowledge of the SHOX gene and protein functions, and have given insight into the etiopathogenesis of short stature. However, the exact role of SHOX in bone development still remains elusive and poses the next major challenge for researchers in this field.  相似文献   

9.
Insulin is a peptide hormone with a high degree of homology with the insulin-like growth factor I (IGF-I). Its biological actions are interlaced with those of GH and IGF-I. The objective of this study is to review the growth promoting actions of insulin. The experimental evidence consists of the use of organ cultures of neonatal mice condilar cartilage insulin which stimulates the cartilage cell differentiation and maturation. Injection of insulin to hypohysectomized rats stimulated tibial growth. Clinical evidence is manifold. Babies with diabetes and hypoinsulinemia are short, whereas babies with hyperinsulinism are big. Children with idiopathic short stature have low insulin whereas obese children with hyperinsulinism are tall. Hypo-insulinized children with diabetes slow their growth until the insulin dose is optimized. It remains to be clarified whether insulin exerts its growth promoting actions via its own receptors, via the IGF-I receptors, or via a hybrid (insulin--IGF-I) receptor.  相似文献   

10.
INTRODUCTION: Assessment of growth hormone (GH) secretion is based on stimulation tests. Low GH peaks in stimulation tests, together with decreased insulin-like growth factor-I (IGF-I) secretion, confirm a diagnosis of GH deficiency (GHD). However, limitations in interpreting the test results and discrepancies between GH and IGF-I secretion in particular patients have both been reported. GH therapy should improve the prognosis of adult height (PAH). The aim of the study was to compare the deficit of height at diagnosis, IGF-I secretion and PAH in children with either decreased (in varying degrees of severity) or normal GH secretion in stimulation tests. MATERIAL AND METHODS: The analysis comprised 540 short children (373 boys, 167 girls), aged 11.7 +/- 3.2 years. In all the patients two GH stimulation tests were performed, IGF-I serum concentration was measured, bone age was assessed and PAH was calculated. According to the GH peak in the two stimulation tests, the patients were classified into the following groups: severe GHD (sGHD)--GH peak < 5 ng/mL (n = 44), partial GHD (pGHD)--GH peak 5-10 ng/mL (n = 190), idiopathic short stature (ISS)--GH peak at least 10 ng/mL (n = 306). RESULTS: A significantly greater deficit of height, lower IGF-I secretion and worse PAH were observed in sGHD than in both remaining groups, while all the differences between pGHD and ISS in the parameters analysed were insignificant. CONCLUSION: The results obtained indicate the necessity of applying another methods of qualifying short children for GH therapy other than GH stimulation tests with a cut-off value at a level of 10 ng/mL.  相似文献   

11.
Noonan syndrome (NS) is a phenotypically heterogeneous syndrome which is frequently associated with short stature. Recent genetic investigations have identified mutations in five genes, namely PTPN11, KRAS, SOS1, NF1 and RAF1 in patients with the NS phenotype. PTPN11 is the commonest, being present in approximately 50% of cases. The degree of short stature in children does not associate closely with the presence of mutations, however some PTPN11-positive patients have decreased GH-dependent growth factors consistent with mild GH insensitivity. GH therapy, using doses similar to those approved for Turner syndrome (TS), induced short-term increases in height velocity over 1-3 years, and may improve final adult height with longer-term treatment.  相似文献   

12.
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.  相似文献   

13.
Clark RG 《Hormone research》2004,62(Z1):93-100
Recombinant human (rh) insulin-like growth factor I (IGF-I) is being developed as a therapy for short stature caused by IGF deficiency (IGFD) and also for diabetes mellitus. To complement the human efficacy and safety data, a large amount of information is available regarding the pharmacology and toxicology of rhIGF-I in animals. This review summarizes the risks and benefits of normalizing blood IGF-I concentrations in IGFD, especially with regard to carcinogenicity, and compares and contrasts safety data for rhIGF-I, recombinant human growth hormone (rhGH), and insulin. A major difference between rhIGF-I and rhGH is that rhIGF-I (like insulin) has hypoglycaemic activity, whereas rhGH opposes insulin action and is diabetogenic. In most of their actions, GH and IGF-I are similar. IGF-I mediates most of the actions of GH, so the safety of rhGH and that of rhIGF-I also share many common features. In animals, the transgenic expression of hGH has been shown to act directly, by activating the prolactin receptor, to increase the incidence of mammary and prostate tumours. In comparison, the over-expression of IGF-I in animals or the administration of rhIGF-I does not have a carcinogenic effect. In formal toxicology and carcinogenicity studies, rhIGF-I has similar effects to insulin in that it can increase food intake, body size, and the growth rate of existing tumours. In animals and humans, IGFD has many long-term detrimental effects besides short stature: it increases the risk of diabetes, cardiovascular disease, and low bone mineral density. Therefore, a case can be made for replacement therapy with rhIGF-I to normalize blood IGF-I levels and reverse the detrimental effects of IGFD.  相似文献   

14.
BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.  相似文献   

15.
Growth hormone (GH) deficiency in children covers a spectrum of disorders involving an impairment in GH secretion and a clinical syndrome characterized by permanent stunting of growth. Ascertaining impairments in GH secretion directly is complex, especially if GH deficiency (GHD) is isolated and not caused by congenital or acquired pituitary defects or genetic abnormalities. It has been established that the concentrations of GH-dependent peptides, such as insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3), are low in patients with GHD. Their levels are, however, also influenced by a multitude of factors, such as age, gender, height, liver function, nutritional status and other hormones. In addition, the type of complex formed, e.g. either binary or ternary, may influence the measurements of IGFs and their binding proteins. Therefore, levels of IGF-I and IGFBP-3 are generally lower in short children compared with age-matched norms. The reported diagnostic value of sub-normal basal levels of IGF-I and IGFBP-3 is, in terms of sensitivity and specificity, approximately 70%. Thus, definite proof of GHD can only be achieved by means of GH measurements. As the diagnosis of GHD is somewhat unlikely if IGF testing shows normal values, it is clearly advantageous to schedule these tests as part of the initial diagnostic work-up in short children, as their implementation is not only practical but also inexpensive. The Pfizer International Growth Database (KIGS) analysis of IGF-I (n = 2,750) and IGFBP-3 (n = 1,300) levels in children with idiopathic GHD shows that these two parameters are now firmly embedded in diagnostic strategies around the world.  相似文献   

16.
This short review will focus on the mechanisms which are thought to be directly involved in GH expression and particularly on the monogenetic disorders which were shown to cause isolated growth hormone deficiency (IGHD) due to insufficient expression of GH. The overwhelming majority of genetic defects detected in isolated growth hormone deficiency (IGHD) are mutations of the coding region of the GH-1 gene which belongs to a five genes containing gene cluster located on 17q22-24. Depending on the type of the GH-1 gene mutation, the mode of inheritance is recessive or dominant. The promotor region of the GH-1 gene which encompasses the 300 bp of the 5' flanking region is highly polymorphic, but the functionally important cis-acting elements are conserved. This sequence is sufficient to control GH expression in cultured cells, but not in transgenic mice: the human GH locus control region, an enhancer region of the GH-1 gene located approximately 15-32 kB upstream of the GH-1 coding region was shown to direct pituitary-specific, high-level GH expression in vivo. Promotion of the GH expression needs the coordinate binding of pituitary-specific (i.e., POU1F1) and ubiquitous trans-acting factors to the cis-acting elements. The mutational analysis of trans-acting factors and cis-acting elements of the GH-1 gene has so far not established any defect outside the coding region as the genetic basis of IGHD except for POU1F1 mutations which cause multiple pituitary hormone deficiency including GHD. Several mutations of the GHRH-receptor gene were shown to result in severe IGHD. In the future, the discovery of new defects of the GH expression machinery will add to our understanding of how GH is sufficiently supplied to the organism and will hopefully simplify and improve the diagnostic approach in a subset of children with IGHD.  相似文献   

17.
GH plays an essential role in the growing child by binding to the growth hormone receptor (GHR) on target cells and regulating multiple growth promoting and metabolic effects. Mutations in the GHR gene coding regions result in GH insensitivity (dwarfism) due to a dysfunctional receptor protein. However, children with idiopathic short stature (ISS) show growth impairment without GH or GHR defects. We hypothesized that decreased expression of the GHR gene may be involved. To test this, we investigated whether common genetic variants (microsatellites, SNPs) in regulatory regions of the GHR gene region were associated with the ISS phenotype. Genotyping of a GT‐repeat microsatellite in the GHR 5′UTR in a Montreal ISS cohort (n = 37 ISS, n = 105 controls) revealed that the incidence of the long/short (L/S) genotype was 3.3× higher in ISS children than controls (P = 0.04, OR = 3.85). In an Italian replication cohort (n = 143 ISS, n = 282 controls), the medium/short (M/S) genotype was 1.9× more frequent in the male ISS than controls (P = 0.017, OR = 2.26). In both ISS cohorts, logistic regression analysis of 27 SNPs showed an association of ISS with rs4292454, while haplotype analysis revealed specific risk haplotypes in the 3′ haploblocks. In contrast, there were no differences in GT genotype frequencies in a cohort of short stature (SS) adults versus controls (CARTaGENE: n = 168 SS, n = 207 controls) and the risk haplotype in the SS cohort was located in the most 5′ haploblock. These data suggest that the variants identified are potentially genetic markers specifically associated with the ISS phenotype.  相似文献   

18.
19.
Assessing short-statured children for growth hormone deficiency   总被引:1,自引:0,他引:1  
AIM: To optimize the workup of short-statured children by defining the most appropriate tools for diagnosing growth hormone (GH) deficiency. METHODS: Patients were assigned to prepubertal (n = 113) or pubertal (n = 112, including 25 boys primed with testosterone) age groups. Mean plasma GH concentration during sleep, GH peak after provocative test, and insulin-like growth factor I (IGF-I) were measured in a single evaluation. RESULTS: The mean GH concentration during sleep was more often normal (n = 155) than the GH peak after provocative tests (n = 105) or the IGF-I concentration (n = 88). Prepubertal patients with a normal body mass index (BMI) had mean GH concentrations during sleep that correlated positively with height, growth rate, GH peak after provocative tests, and IGF-I (p < 0.0005 for all) and negatively with the difference between target and patient heights (p = 0.01) and BMI (p < 0.05). Pubertal patients with a normal BMI had a mean GH concentration during sleep that correlated positively with GH after provocative tests (p < 0.0001) and IGF-I (p < 0.005). Mean GH concentration during sleep and IGF-I concentration for boys primed with testosterone were more often normal (n = 23) than the GH peak after provocative tests (n = 14). All 9 patients with pituitary stalk interruption had low IGF-I concentrations; 1 patient had a normal GH peak after provocative test, and 2 patients had normal mean GH concentrations during sleep. CONCLUSIONS: Measuring the GH concentration during sleep and priming boys with pubertal delay can help to exclude idiopathic GH deficiency. Magnetic resonance imaging is needed to exclude anatomic abnormalities when GH and/or IGF-I concentrations are low.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) attenuates GH gene expression by a receptor-mediated mechanism in pituitary cells. We, therefore, isolated neomycin-resistant stable GC cell transfectants over-expressing human IGF-I receptor cDNA (IGFIR-cDNA) cloned in an Rous sarcoma virus-directed expression vector. A transfection control contained the IGFIR-cDNA cloned in the reverse orientation. Southern analysis confirmed incorporation of human IGFIR-cDNA sequences into rat genomic DNA. Immunoprecipitation of metabolically labeled [35S]methionine stably transfected cells revealed a 200-kDa human IGF-I receptor precursor protein. Growth rate and basal GH secretion were not altered in transfected cells. Although transfected and control cells had a similar Kd for IGF-I binding (0.43 and 0.40 nM, respectively), IGF-I-binding sites were induced 17-fold (384,000 vs. 22,000 sites/cell). Treatment of cells with IGF-I (6.5 nM) maximally attenuated GH secretion by 80% compared to 40% attenuation in control cells (P less than 0.0001). Maximal suppression of GH in transfectants occurred within 15 h of treatment, and GH secretion by control cells was only maximally suppressed after 42 h. The ED50 of IGF-I suppression of GH secretion in transfectants after 15 h was 0.5 nM. These results demonstrate that transfectants overexpressing human IGF-I receptor are hyperresponsive to exogenous IGF-I. These data indicate that IGF-I receptor number plays an important role in mediating the signal transduction of IGF-I to the GH gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号