首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Summary In the tortoise Testudo graeca, the lizards Lacerta dugesi and Lacerta pityusensis, and the snake Natrix natrix, the innervation of the testicular interstitial tissue was studied by light and electron microscopy, the acetylcholinesterase (ache) technique, the Falck-Hillarp method for the detection of catecholamines, and the application of 6-hydroxydopamine. The intertubular spaces of the reptilian testes studied contain adrenergic nerve fibers the amount and distribution of which varies considerably both in various species and in various stages of the reproduction cycle. Nerve fibers do not enter the seminiferous epithelium. Fluorescence microscopy of the lizard testis reveals catecholaminergic varicosities which are mainly arranged around blood vessels, but do not show obvious connexions to Leydig cells. Ache-positive fibers are equally distributed in lizard testes surrounding each seminiferous tubule. In Natrix natrix ache-positive fibers are irregularly spread among groups of tubules, without showing a definite relation to Leydig cells either. By electron microscopy bundles of unmyelinated axons and axon terminals can be more easily detected in the testes of immature animals than in adult. Terminals of nerve fibers containing small (400–500 Å in diameter) and large (800–1400 Å) dense-cored vesicles and sometimes small clear vesicles establish contacts with Leydig cells. Three types of contact are described. 1. Contacts par distance at a distance of about 2000 Å and basal lamina interposed; 2. membranous contacts having a 200 Å gap only between axolemma and Leydig cell plasmalemma; 3. invaginations of terminals into Leydig cell perikarya. The latter may exhibit surface specialisations, which strongly resemble postsynaptic membrane thickenings. Experiments using 6-hydroxydopamine underline the adrenergic character of testicular nerve fibers, which can be regarded as another example of non-cholinergic, ache-positive neurons. In the testis of the immature tortoise profiles of axons occur which probably represent purinergic, ache-positive neurons.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).I am much indebted to Mrs. R. Sprang for her skillfull technical assistance.  相似文献   

5.
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.  相似文献   

6.
7.
Some forms of testicular germ cell tumors (TGCTs) arise from primordial germ cells (PGCs) during fetal development. In both humans and mice, genetic control of susceptibility is complex, involving both Mendelian and polygenic factors. Identification and characterization of TGCT genes will provide insight not only into the basis for inherited susceptibility, but also into the genetic control of the development of the PGC lineage. Recent work has revealed the identity of several susceptibility genes that are inherited as Mendelian traits, the chromosomal location of yet-to-be identified TGCT susceptibility genes, as well as clues to the nature of developmental pathways involved in tumorigenesis. In this review we summarize current understanding of the biology and genetics of TGCTs in mice and discuss the relevance of this work to testicular cancer in humans. Received: 18 September 2000 / Accepted: 4 October 2000  相似文献   

8.
Mitochondria from skeletal muscle, heart and liver of strain 129/ReJ-dy dystrophic mice and their littermate controls were characterized with respect to their respiratory and phosphorylating activities. Skeletal muscle mitochondria from dystrophic mice showed significantly lower state 3 respiratory rates than controls with both pyruvate + malate and succinate as substrates (P < 0.01). ADP/O and Ca2+/O ratios were found to be normal. A decreased rate of NADH oxidation (0.01 <P < 0.05) by sonicated mitochondrial suspensions from dystrophic mice was also seen. High respiratory rates with ascorbate + phenazine methosulfate as substrates indicated that cytochrome oxidase was not rate limiting in the oxidation of either pyruvate + malate or succinate. Skeletal muscle mitochondria from dystrophic mice showed no deficiency in any of the cytochromes or coenzyme Q. Mg2+-stimulated ATPase activity was higher in dystrophic muscle mitochondria than in controls, but basal and oligomycin-insensitive activities were virtually identical to those of controls. A significant reduction in the intramitochondrial NAD+ content (0.01 <P < 0.02) was seen in dystrophic skeletal muscle as compared to controls. Heart mitochondria from dystrophic mice showed similar, though less extensive abnormalities while liver mitochondria were essentially normal. We concluded from these results that skeletal muscle mitochondria from strain 129 dystrophic mice possess impairments in substrate utilization which may result from (1) an abnormality in the transfer of electrons on the substrate side of coenzyme Q in the case of succinate oxidation; (2) a defect on the path of electron flow from NADH to cytochrome c, and (3) a deficiency of NAD+ in the case of NAD+-linked substrates.  相似文献   

9.
A homozygous nonsense mutation (Ter) in murine Dnd1 (Dnd1Ter/Ter) results in a significant early loss of primordial germ cells (PGCs) prior to colonization of the gonad in both sexes and all genetic backgrounds tested. The same mutation also leads to testicular teratomas only on the 129Sv/J background. Male mutants on other genetic backgrounds ultimately lose all PGCs with no incidence of teratoma formation. It is not clear how these PGCs are lost or what factors directly control the strain-specific phenotype variation. To determine the mechanism underlying early PGC loss we crossed Dnd1Ter/Ter embryos to a Bax-null background and found that germ cells were partially rescued. Surprisingly, on a mixed genetic background, rescued male germ cells also generated fully developed teratomas at a high rate. Double-mutant females on a mixed background did not develop teratomas, but were fertile and produced viable off-spring. However, when Dnd1Ter/Ter XX germ cells developed in a testicular environment they gave rise to the same neoplastic clusters as mutant XY germ cells in a testis. We conclude that BAX-mediated apoptosis plays a role in early germ cell loss and protects from testicular teratoma formation on a mixed genetic background.  相似文献   

10.
Tyrosylprotein sulfotransferase 2 (TPST2) is one of the enzymes responsible for tyrosine O-sulfation and catalyzes the sulfation of the specific tyrosine residue of thyroid stimulating hormone receptor (TSHR). Since this modification is indispensable for the activation of TSH signaling, a non-functional TPST2 mutation (Tpst2(grt)) in DW/J-grt mice leads to congenital hypothyroidism (CH) characterized by severe thyroid hypoplasia and dwarfism related to TSH hyporesponsiveness. Previous studies indicated that the genetic background of the 129(+Ter)/SvJcl (129) mouse strain ameliorates Tpst2(grt)-induced CH. To identify loci responsible for CH resistance in 129 mice, we performed quantitative trait locus (QTL) analysis using backcross progenies from susceptible DW/J and resistant 129 mice. We used the first principal component calculated from body weights at 5, 8 and 10 weeks as an indicator of CH, and QTL analysis mapped a major QTL showing a highly significant linkage to the distal portion of chromosome (Chr) 2; between D2Mit62 and D2Mit304, particularly close to D2Mit255. In addition, two male-specific QTLs showing statistically suggestive linkage were also detected on Chrs 4 and 18, respectively. All QTL alleles derived from the 129 strain increased resistance to growth retardation. There was also a positive correlation between recovery from thyroid hypoplasia and the presence of the 129 allele at D2Mit255 in male progenies. These results suggested that the major QTL on Chr 2 is involved in thyroid development. Moreover, since DW/J congenic strain mice carrying both a Tpst2(grt) mutation and 129 alleles in the major QTL show resistance to dwarfism and thyroid hypoplasia, we confirmed the presence of the resistant gene in this region, and that it is involved in thyroid development. Further genetical analysis should lead to identification of genes for CH tolerance and, from a better understanding of thyroid organogenesis and function, the subsequent development of new treatments for thyroid disorders.  相似文献   

11.
The conversion of testosterone and progesterone to other products was studied in testes of normal BALB/C mice, testieular, feminized (Tfm o+) and testicular feminized mice carrying the protective (ohv) gene. The formation of testosterone from progesterone was 11 ± 1.3% in normal mice, 2.20 ± 0.8% in (Tfm ohv) and 0.8 ± 0.2% in (Tfm o+ mice. With androstenedione as substrate, both (Tfm o+) and (Tfm ohv) synthesized testosterone equally well. Testicular progesterone metabolism was also compared between normal and sex reversed (sxr) mice. The data suggested that the 17β hydroxysteroid dehydrogenase was more active in normal mice whereas the testes from the sex reversed (Tfm ohv) gave higher conversions to androstenedione. Some conversion to dihydrotestosterone and androstanediol was found in all the testicular incubations.  相似文献   

12.
13.
Genealogy of the 129 inbred strains: 129/SvJ is a contaminated inbred strain   总被引:20,自引:0,他引:20  
The 129 mouse is the most widely used strain in gene targeting experiments. However, numerous substrains exist with demonstrable physiological differences. In this study a set of simple sequence length polymorphisms (SSLPs) was used to determine the relatedness of selected 129 substrains. 129/SvJ was significantly different from the other 129 substrains and is more accurately classified as a recombinant congenic strain (129cX/Sv), being derived from 129/Sv and an unknown strain. This mixed genetic background could complicate gene targeting experiments by reducing homologous recombination efficiency when constructs and ES cells are not derived from the same 129 substrain. Additionally, discrepancies due to different genetic backgrounds may arise when comparing phenotypes of genes targeted in different 129-derived ES cell lines. Received: 2 December 1996 / Accepted: 10 February 1997  相似文献   

14.
15.
16.
NK cells are implicated in antiviral responses, bone marrow transplantation and tumor immunosurveillance. Their function is controlled, in part, through the Ly49 family of class I binding receptors. Inhibitory Ly49s suppress signaling, while activating Ly49s (i.e., Ly49D) activate NK cells via the DAP12 signaling chain. Activating Ly49 signaling has been studied primarily in C57BL/6 mice, however, 129 substrains are commonly used in gene-targeting experiments. In this study, we show that in contrast to C57BL/6 NK cells, cross-linking of DAP12-coupled receptors in 129/J mice induces phosphorylation of DAP12 but not calcium mobilization or cytokine production. Consistent with poor-activating Ly49 function, 129/J mice reject bone marrow less efficiently than C57BL/6 mice. Sequence analysis of receptors and DAP12 suggests no structural basis for inactivity, and both the 129/J and C57BL/6 receptors demonstrate normal function in a reconstituted receptor system. Most importantly, reconstitution of Ly49D in 129/J NK cells demonstrated that the signaling deficit is within the NK cells themselves. These unexpected findings bring into question any NK analysis of 129/J, 129Sv, or gene-targeted mice derived from these strains before complete backcrossing, and provide a possible explanation for the differences observed in the immune response of 129 mice in a variety of models.  相似文献   

17.
18.
A Cre recombinase expression cassette was inserted into the X-linked Hprt locus by gene targeting in a mouse embryonic stem (ES) cell line isogenic to strain 129S1/SvImJ (129S1), then the transgene was introduced into 129S1 mice through ES cell chimeras. When females hemizygous for this transgene were mated to males carrying a neomycin selection cassette flanked by loxP sites, the cassette was always excised regardless of Cre inheritance and without detectable mosaicism. The usefulness of this "Cre-deleter" transgenic line is in its efficiency and defined genetic status in terms of mouse strain and location of the transgene.  相似文献   

19.
C57BL/6J (B6) mice containing the Mus domesticus poschiavinus Y chromosome, YPOS, develop ovarian tissue, whereas testicular tissue develops in DBA/2J or 129S1/SvImJ (129) mice containing the YPOS chromosome. To identify genes involved in sex determination, we used a congenic strain approach to determine which chromosomal regions from 129Sl/SvImJ provide protection against sex reversal in XYPOS mice of the C57BL/6J.129-YPOS strain. Genome scans using microsatellite and SNP markers identified a chromosome 11 region of 129 origin in C57BL/6J.129-YPOS mice. To determine if this region influenced testis development in XYPOS mice, two strains of C57BL/6J-YPOS mice were produced and used in genetic experiments. XYPOS adults homozygous for the 129 region had a lower incidence of sex reversal than XYPOS adults homozygous for the B6 region. In addition, many homozygous 129 XYPOS fetuses developed normal-appearing testes, an occurrence never observed in XYPOS mice of the C57BL/6J-YPOS strain. Finally, the amount of testicular tissue observed in ovotestes of heterozygous 129/B6 XYPOS fetuses was greater than the amount observed in ovotestes of homozygous B6 XYPOS fetuses. We conclude that a chromosome 11 locus derived from 129Sl/SvImJ essentially protects against sex reversal in XYPOS mice. A number of genes located in this chromosome 11 region are discussed as potential candidates.  相似文献   

20.
Amiloride, a sodium channel blocker, is known to suppress NaCl responses of the chorda tympani (CT) nerve in various mammalian species. In mice, the NaCl suppressing effect of amiloride is reported to differ among strains. In C57BL mice, amiloride inhibits NaCl responses to about 50% of control, whereas no such clear suppression was evident in prior studies with 129 mice. However, evidence from behavioral studies is not entirely consistent with this. Recently, it has been found that genetic backgrounds of 129 mice differ within substrains. 129X1/SvJ (formerly 129/SvJ) mice differ from the 129P3/J (formerly 129/J) strain by 25% of sequence length polymorphisms. Therefore, we examined possible substrain difference between 129P3/J and 129X1/SvJ mice in the amiloride sensitivity of electrophysiologically recorded NaCl responses. Amiloride significantly suppressed CT responses to NaCl without affecting responses to KCl both in 129P3/J and 129X1/SvJ mice. However, the magnitude of the amiloride inhibition was significantly larger (approximately 50% of control in response to 0.01-1.0 M NaCl by 100 microM amiloride) in 129X1/SvJ than in 129P3/J mice (approximately 20% of control in response to 0.03-0.3 M NaCl by 100 microM amiloride). Threshold amiloride concentration for suppression of responses to 0.3 M NaCl was 30 microM in 129P3/J mice, which was higher than that in 129X1/SvJ mice (10 microM). In 129X1/SvJ mice, the threshold amiloride concentration eliciting inhibition of NaCl responses and the magnitude of the inhibition were comparable with those in C57BL/6 mice. These results suggest that amiloride sensitivity of NaCl responses differs even among the 129 substrains, 129P3/J and 129 X1/SvJ, and the substrain difference of 129 mice in amiloride sensitivity is as large as that between two inbred strains (129P3/J and C57BL/6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号