首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Receptor protein-tyrosine phosphatase (RPTP) alpha belongs to the large family of receptor protein-tyrosine phosphatases containing two tandem phosphatase domains. Most of the catalytic activity is retained in the first, membrane-proximal domain (RPTPalpha-D1), and little is known about the function of the second, membrane-distal domain (RPTPalpha-D2). We investigated whether proteins bound to RPTPalpha using the two-hybrid system and found that the second domain of RPTPsigma interacted with the juxtamembrane domain of RPTPalpha. We confirmed this interaction by co-immunoprecipitation experiments. Furthermore, RPTPalpha not only interacted with RPTPsigma-D2 but also with RPTPalpha-D2, LAR-D2, RPTPdelta-D2, and RPTPmu-D2, members of various RPTP subfamilies, although with different affinities. In the yeast two-hybrid system and in glutathione S-transferase pull-down assays, we show that the RPTP-D2s interacted directly with the wedge structure of RPTPalpha-D1 that has been demonstrated to be involved in inactivation of the RPTPalpha-D1/RPTPalpha-D1 homodimer. The interaction was specific because the equivalent wedge structure in LAR was unable to interact with RPTPalpha-D2 or LAR-D2. In vivo, we show that other interaction sites exist as well, including the C terminus of RPTPalpha-D2. The observation that RPTPalpha, but not LAR, bound to multiple RPTP-D2s with varying affinities suggests a specific mechanism of cross-talk between RPTPs that may regulate their biological function.  相似文献   

2.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.  相似文献   

3.
Inhibition of protein-tyrosine phosphatases (PTPs) counterbalancing protein-tyrosine kinases (PTKs) offers a strategy for augmenting PTK actions. Conservation of PTP catalytic sites limits development of specific PTP inhibitors. A number of receptor PTPs, including the leukocyte common antigen-related (LAR) receptor and PTPmu, contain a wedge-shaped helix-loop-helix located near the first catalytic domain. Helix-loop-helix domains in other proteins demonstrate homophilic binding and inhibit function; therefore, we tested the hypothesis that LAR wedge domain peptides would exhibit homophilic binding, bind to LAR, and inhibit LAR function. Fluorescent beads coated with LAR or PTPmu wedge peptides demonstrated PTP-specific homophilic binding, and LAR wedge peptide-coated beads precipitated LAR protein. Administration of LAR wedge Tat peptide to PC12 cells resulted in increased proliferation, decreased cell death, increased neurite outgrowth, and augmented Trk PTK-mediated responses to nerve growth factor (NGF), a phenotype matching that found in PC12 cells with reduced LAR levels. PTPmu wedge Tat peptide had no effect on PC12 cells but blocked the PTPmu-dependent phenotype of neurite outgrowth of retinal ganglion neurons on a PTPmu substrate, whereas LAR wedge peptide had no effect. The survival- and neurite-promoting effect of the LAR wedge peptide was blocked by the Trk inhibitor K252a, and reciprocal co-immunoprecipitation demonstrated LAR/TrkA association. The addition of LAR wedge peptide inhibited LAR co-immunoprecipitation with TrkA, augmented NGF-induced activation of TrkA, ERK, and AKT, and in the absence of exogenous NGF, induced activation of TrkA, ERK, and AKT. PTP wedge domain peptides provide a unique PTP inhibition strategy and offer a novel approach for augmenting PTK function.  相似文献   

4.
5.
It has been shown that endogenous production of reactive oxygen species (ROS) during T cell activation regulates signaling events including MAPK activation. Protein tyrosine phosphatases (PTPs) have been regarded as targets of ROS which modify the catalytic cysteine residues of the enzymes. We have analyzed the interplay between the inhibition of PTPs and the activation of MAPK by H(2)O(2). Stimulation of Jurkat T cells with H(2)O(2) induces the phosphorylation of ERK, p38, and JNK members of MAPK family. H(2)O(2) stimulation of T cells was found to inhibit the PTP activity of CD45, SHP-1, and HePTP. Transfection of cells with wtSHP-1 decreased H(2)O(2)-induced ERK and JNK phosphorylation without affecting p38 phosphorylation. Transfection with wtHePTP inhibited H(2)O(2)-induced ERK and p38 phosphorylation without inhibiting JNK phosphorylation. The Src-family kinase inhibitor, PP2, inhibited the H(2)O(2)-induced phosphorylation of ERK, p38, and JNK. The phospholipase C (PLC) inhibitor, U73122, or the protein kinase C (PKC) inhibitor, Ro-31-8425, blocked H(2)O(2)-induced ERK phosphorylation, whereas the same treatment did not inhibit p38 or JNK phosphorylation. Taken together, these results suggest that inhibition of PTPs by H(2)O(2) contributes to the induction of distinct MAPK activation profiles via differential signaling pathways.  相似文献   

6.
Insulin-dependent diabetes mellitus (IDDM) has been found to be highly associated with a rare allele of the complement protein, properdin factor B (BF). Assuming that there is a susceptibility gene for IDDM tightly linked to the genetic locus forBF and the major histocompatibility complex (MHC), the distribution of BF types in more than 1100 North American IDDM patients strongly argues for the rejection of dominant, epistatic, and overdominant modes of inheritance. Other evidence suggesting complex modes of inheritance for IDDM is reviewed and it is concluded that our observations and published data are consistent with the idea of susceptibility to IDDM being inherited as a simple autosomal recessive trait. — C4 and C2 types, also linked toBF and theMHC, were investigated too. C4 Fs0 was found to be increased in association with BF F1, while C4 f0S and C2 B were each found to occur twice as frequently as in a control population and will be of value in defining haplotypes associated with susceptibility to IDDM.  相似文献   

7.
A population association has consistently been observed between insulin-dependent diabetes mellitus (IDDM) and the "class 1" alleles of the region of tandem-repeat DNA (5'' flanking polymorphism [5''FP]) adjacent to the insulin gene on chromosome 11p. This finding suggests that the insulin gene region contains a gene or genes contributing to IDDM susceptibility. However, several studies that have sought to show linkage with IDDM by testing for cosegregation in affected sib pairs have failed to find evidence for linkage. As means for identifying genes for complex diseases, both the association and the affected-sib-pairs approaches have limitations. It is well known that population association between a disease and a genetic marker can arise as an artifact of population structure, even in the absence of linkage. On the other hand, linkage studies with modest numbers of affected sib pairs may fail to detect linkage, especially if there is linkage heterogeneity. We consider an alternative method to test for linkage with a genetic marker when population association has been found. Using data from families with at least one affected child, we evaluate the transmission of the associated marker allele from a heterozygous parent to an affected offspring. This approach has been used by several investigators, but the statistical properties of the method as a test for linkage have not been investigated. In the present paper we describe the statistical basis for this "transmission test for linkage disequilibrium" (transmission/disequilibrium test [TDT]). We then show the relationship of this test to tests of cosegregation that are based on the proportion of haplotypes or genes identical by descent in affected sibs. The TDT provides strong evidence for linkage between the 5''FP and susceptibility to IDDM. The conclusions from this analysis apply in general to the study of disease associations, where genetic markers are usually closely linked to candidate genes. When a disease is found to be associated with such a marker, the TDT may detect linkage even when haplotype-sharing tests do not.  相似文献   

8.
Susceptibility to type 1A autoimmune diabetes is linked to expression of particular MHC class II molecules, notably HLA-DQ8 in man and the orthologous I-Ag7 in the nonobese diabetic mouse. In the present study, we analyzed two peptide epitopes (peptides 2 and 7) from the diabetes autoantigen phogrin (IA-2beta), in the context of their presentation by the I-Ag7 and HLA-DQ8 molecules and their role as potential T cell antigenic epitopes in human diabetes. Both of these peptides are targets of diabetogenic CD4+ T cell clones in the nonobese diabetic mouse. Transgenic mice expressing HLA-DQ8 as the sole class II molecule generated a robust T cell-proliferative response when primed with peptide 2 or peptide 7 in CFA. Analysis of the IL-2 secretion from peptide 2-reactive T cell hybridomas stimulated with alanine-substituted peptides identified three residues that were crucial to the response. Among 41 islet cell Ag-positive prediabetic human subjects, 36.5% showed PBMC-proliferative responses to peptide 7, 17.1% to peptide 2, and 17.1% to both peptides; no response was seen among 20 matched healthy controls. Stratification of the data based upon HLA haplotype suggested that peptide 7 could be presented by at least one HLA-DR molecule in addition to HLA-DQ8, a finding that was supported by blocking studies with monomorphic mAbs. The results indicate that common phogrin peptides are targeted by autoreactive T cells in human and murine type 1A diabetes, and that the responses may in part be associated with the similar peptide-binding specificities of I-Ag7 and HLA-DQ8.  相似文献   

9.
RPTPmu is a receptor-like protein-tyrosine phosphatase (RPTP) whose ectodomain mediates homotypic cell-cell interactions. The intracellular part of RPTPmu contains a relatively long juxtamembrane domain (158 amino acids; aa) and two conserved phosphatase domains (C1 and C2). The membrane-proximal C1 domain is responsible for the catalytic activity of RPTPmu, whereas the membrane-distal C2 domain serves an unknown function. The regulation of RPTP activity remains poorly understood, although dimerization has been proposed as a general mechanism of inactivation. Using the yeast two-hybrid system, we find that the C1 domain binds to an N-terminal noncatalytic region in RPTPmu, termed JM (aa 803-955), consisting of a large part of the juxtamembrane domain (120 aa) and a small part of the C1 domain (33 aa). When co-expressed in COS cells, the JM polypeptide binds to both the C1 and the C2 domain. Strikingly, the isolated JM polypeptide fails to interact with either full-length RPTPmu or with truncated versions of RPTPmu that contain the JM region, consistent with the JM-C1 and JM-C2 interactions being intramolecular rather than intermolecular. Furthermore, we find that large part of the juxtamembrane domain (aa 814-922) is essential for C1 to be catalytically active. Our findings suggest a model in which RPTPmu activity is regulated by the juxtamembrane domain undergoing intramolecular interactions with both the C1 and C2 domain.  相似文献   

10.
11.
Severe IDDM (insulin-dependent diabetes mellitus) was produced in the musk shrew (Suncus murimus, Insectivora) by a high dose (a single intraperitoneal injection of 100 mg/kg Body Weight) of streptozotocin (STZ) injection. All shrews that were administered a high dose of STZ exhibited hyperglycemia (449 +/- 16 mg/dl vs 73 +/- 4 mg/dl in controls) and hypoinsulinemia(0.25 +/- 0.07 ng/ml vs 10.96 +/- 1.97 ng/ml in controls) with ketosuria 10 days after injection. Their livers were enlarged and exhibited ayellowish-brown color with marked triglyceride (TG) accumulation (63.25 +/- 7.10 mg/g Liver vs 2.11 +/- 0.19 mg/g Liver in controls). It is probable that the increased influx of fatty acids into the liver induced by hypoinsulinemia and the low capacity of excretion of lipoprotein secretion from liver in the musk shrew resulting from a deficiency of apolipoprotein B synthesis play important roles in fatty liver formation. Hyperlipidemia was another feature in shrews with severe IDDM. The blood TG level was especially high in these shrews (899 +/- 178 mg/dl vs 23 +/- 5 mg/dl in controls). These results indicate that the IDDM shrew, induced by high doses of STZ, is a unique model characterized by fatty liver and hyperlipidemia and may be useful for studying lipid metabolism of IDDM.  相似文献   

12.
The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n=16) and hepatocellular carcinoma (n=169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6(+) tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.  相似文献   

13.
HLA phenotypes of cases with insulin-dependent diabetes mellitus (IDDM) and identity by descent of HLA haplotypes in affected sib-pairs support an intermediate model in which morbid risk is increased by one HLA-linked IDDM determinant, and greatly increased by two determinants, which may be qualitatively different in DR3 and DR4 haplotypes. Linkage analysis allowing for gametic disequilibrium reveals no recombination in pedigrees with a DR3/DR4 propositus, but spurious recombination in the remaining pedigrees. This evidence favors interaction of unlinked IDDM determinants to produce affection in a small proportion of heterozygotes for an HLA-linked determinant. Partition of data by HLA type of the propositus (ideally by DR and the complement types jointly) is a powerful method to resolve etiological heterogeneity for HLA-associated diseases.  相似文献   

14.
Several investigators have reported an association between insulin-dependent diabetes mellitus (IDDM) and an RFLP detected with a probe for the constant region of the beta chain (C beta) of the human T-cell receptor (TCR). A likely hypothesis is that the closely linked TCR variable (V beta) region genes contribute to IDDM susceptibility and that the association with the TCR C beta locus reflects this contribution, via linkage disequilibrium between V beta and C beta. The products of the beta-chain genes might be expected to be involved in the etiology of IDDM because of the autoimmune aspects of IDDM, the known involvement of HLA, and the necessity for TCR and HLA molecules to interact in an immune response. In order to investigate the hypothesis, we tested for linkage between IDDM and V genes encoded at either the TCR beta locus on chromosome 7 or the TCR alpha locus on chromosome 14, using 36 families with multiple affected sibs. No excess sharing of haplotypes defined by V alpha or V beta gene RFLPs was observed in affected sib pairs from IDDM families. We also studied unrelated IDDM patients (N = 73) and controls (N = 45) with the C beta RFLP but were unable to confirm the reported association even when the sample was stratified by HLA-DR type. Our results are incompatible with close linkage, in the majority of families, between either the TCR alpha or TCR beta locus and a gene making a major contribution to susceptibility to IDDM.  相似文献   

15.
cDNA expression library screening revealed binding between the membrane distal catalytic domain (D2) of protein-tyrosine phosphatase alpha (PTPalpha) and calmodulin. Characterization using surface plasmon resonance showed that calmodulin bound to PTPalpha-D2 in a Ca(2+)-dependent manner but did not bind to the membrane proximal catalytic domain (D1) of PTPalpha, to the two tandem catalytic domains (D1D2) of PTPalpha, nor to the closely related D2 domain of PTPepsilon. Calmodulin bound to PTPalpha-D2 with high affinity, exhibiting a K(D) approximately 3 nm. The calmodulin-binding site was localized to amino acids 520-538 in the N-terminal region of D2. Site-directed mutagenesis showed that Lys-521 and Asn-534 were required for optimum calmodulin binding and that restoration of these amino acids to the counterpart PTPepsilon sequence could confer calmodulin binding. The overlap of the binding site with the predicted lip of the catalytic cleft of PTPalpha-D2, in conjunction with the observation that calmodulin acts as a competitive inhibitor of D2-catalyzed dephosphorylation (K(i) approximately 340 nm), suggests that binding of calmodulin physically blocks or distorts the catalytic cleft of PTPalpha-D2 to prevent interaction with substrate. When expressed in cells, full-length PTPalpha and PTPalpha lacking only D1, but not full-length PTPepsilon, bound to calmodulin beads in the presence of Ca(2+). Also, PTPalpha was found in association with calmodulin immunoprecipitated from cell lysates. Thus calmodulin does associate with PTPalpha in vivo but not with PTPalpha-D1D2 in vitro, highlighting a potential conformational difference between these forms of the tandem catalytic domains. The above findings suggest that calmodulin is a possible specific modulator of PTPalpha-D2 and, via D2, of PTPalpha.  相似文献   

16.
L363,586 is a potent, long-acting, somatostatin derivative. Intravenous and intranasal administration to diabetic subjects was effective in reducing both fasting and postprandial hyperglycemia. Also in patients stabilized on a closed-loop insulin infusion device, the intranasal administration of L363,586 was able to improve the glucose imbalance known as dawn phenomenon. Therefore, this analogue associated to standard insulin replacement could be useful in the control of unstable diabetes.  相似文献   

17.
The prevalence of polymorphic amino acids at position 57 of the HLA DQB1 in Kuwaiti children with insulin-dependent diabetes mellitus (IDDM) and nondiabetic controls has been determined using a polymerase chain reaction-sequence-specific primers (PCR-SSP) method. Using this approach, 34/55 (62%) IDDM children were found to be homozygous Ala/Ala and 19/55 (35%) were heterozygous with various combinations. Amongst the IDDM children with heterozygous genotype at codon 57 of HLA DQB1, 6/55 (11%) had Asp/Ala, 8/55 (15%) had Ala/Val, 4/55 (7%) had Ala/Ser and 1/55 had Asp/Val allelic combinations. When considered collectively, the nonaspartate (NA) alleles were represented in 87% of the IDDM cases and only 13% cases had Asp(57) allele in different heterozygous combinations, while none of the IDDM subjects had a homozygous Asp genotype. In nondiabetic controls, homozygous non-Asp (NA) alleles were represented in 44% subjects, 37% of the controls were heterozygous (NA/A) and 19% had a homozygous (A/A) genotype. These differences between the IDDM group and the control group were found to be statistically significant. Our data report one of the highest frequency of NA/NA residues at this locus compared with that from different world populations (Sardinians, Norwegians, US Caucasians, US Blacks and Chinese).  相似文献   

18.
Background: Several lines of evidence suggest that enterovirus infections may be involved in the etiology of the insulin-dependent diabetes mellitus (IDDM). Often in the literature, a reference is given to specifically diabetogenic strains of enterovirus but there is no systematic assessment about the generation of such strains in the course of evolution or about their abundance among the 64 enterovirus serotypes pathogenic to man. If enteroviruses truly are involved in the etiology of IDDM, a possibility to prevent the disease with enterovirus vaccines might become feasible. In such a situation it would be important to know which serotypes and strains are the most important ones, and whether there would be differences between the strains as regards the pathogenetic mechanisms involved.Objective: To present a brief summary of the basic biology of enteroviruses, on existing data of genetic variation of enteroviruses, and on molecular epidemiology of human enteroviruses with special reference to the different epidemiological modes of their putative involvement in the pathogenesis of IDDM.Conclusions: Like RNA viruses in general, enteroviruses exist as a quasispecies, a mixture of genetic microvariants with a vast potential to adapt to new environments. This means that specifically beta cell-tropic and potentially diabetogenic variants could, in theory, emerge sporadically during systemic infection of any individual. The patterns of genetic diversification of enteroviruses, cocirculation of separate genetic lineages in the human populations, and the assumed geographical restrictions of endemic transmission of the lineages, allow one to hypothesize that populations with a high persisting IDDM incidence might be endemically infected by some specific strains of enteroviruses. However, so far, there is no systematically collected data supporting this hypothesis.  相似文献   

19.
We have previously found association between an allele of the interleukin-1 (IL-1) receptor antagonist gene (ILIRN) and several inflammatory diseases, where IL-1 has been implicated in the inflammatory mechanism. We have now, therefore, tested the association of this specific allele (ILIRN*2) with complications of diabetes which have an inflammatory tissue component. We have tested the allele frequency of ILIRN*2 in 128 patients with insulin-dependent and 125 with non-insulin-dependent diabetes mellitus (NIDDM). There was a significant association between carriage of ILIRN*2 and diabetic nephropathy (P < 0.0001,P corrected < 0.0012). The association was significant in both types of diabetes, but the observed increase was highest in NIDDM, rising to double the control levels. It appears that ILIRN*2 is a novel genetic marker of severity of inflammatory complications of diseases rather than a marker of disease susceptibility. If the DNA polymorphism is associated with altered gene function, new therapeutic interventions may be possible.  相似文献   

20.
Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a protein termed tobacco RIP (TRIP) was isolated from tobacco (Nicotiana tabacum) leaves and purified using ion exchange and gel filtration chromatography in combination with yeast ribosome depurination assays. TRIP has a molecular mass of 26 kD as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed strong N-glycosidase activity as manifested by the depurination of yeast rRNA. Purified TRIP showed immunoreactivity with antibodies of RIPs from Mirabilis expansa. TRIP released fewer amounts of adenine residues from ribosomal (Artemia sp. and rat ribosomes) and non-ribosomal substrates (herring sperm DNA, rRNA, and tRNA) compared with other RIPs. TRIP inhibited translation in wheat (Triticum aestivum) germ more efficiently than in rabbit reticulocytes, showing an IC50 at 30 ng in the former system. Antimicrobial assays using highly purified TRIP (50 microg mL(-1)) conducted against various fungi and bacterial pathogens showed the strongest inhibitory activity against Trichoderma reesei and Pseudomonas solancearum. A 15-amino acid internal polypeptide sequence of TRIP was identical with the internal sequences of the iron-superoxide dismutase (Fe-SOD) from wild tobacco (Nicotiana plumbaginifolia), Arabidopsis, and potato (Solanum tuberosum). Purified TRIP showed SOD activity, and Escherichia coli Fe-SOD was observed to have RIP activity too. Thus, TRIP may be considered a dual activity enzyme showing RIP-like activity and Fe-SOD characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号