首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the -subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.Abbreviations CAB chlorophyll a/b-binding protein - FCP fucoxanthin chlorophyll a/c-binding protein - fcp the respective FCP genes - LHC light-harvesting complex - PCP peridinin chlorophyll a-binding protein - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

2.
In chromophytic algae the major light-harvesting complex is the fucoxanthin chlorophylla/c protein complex. Recently, we have cloned several highly related cDNA and genomic sequences encoding the fucoxanthin chlorophylla/c proteins from the diatomPhaeodactylum tricornutum. These genes are clustered on the nuclear genome. The sequences of the fucoxanthin chlorophylla/c proteins as deduced from the gene sequences have some similarity to the chlorophylla/b proteins associated with light-harvesting complexes of higher plants and green algae. Like the chlorophylla/b proteins of higher plants, the fucoxanthin chlorophylla/c proteins are synthesized as higher-molecular weight precursors in the cytoplasm of the cell and are transported into the plastids. However, the mode of transport into diatom plastids is very different from the mechanism involved in transporting proteins into the chloroplasts of higher plants and green algae. We focus here on the characteristics of the fucoxanthin chlorophylla/c proteins, the mode of transport of these proteins into plastids, the arrangement of the genes encoding these proteins, and efforts to utilize these genes to develop a DNA transformation system for diatoms.  相似文献   

3.
cDNA species encoding precursor polypeptides of the chlorophyll a/b/c light-harvesting complex (LHC) of Mantoniella squamata were cloned and sequenced. The precursor polypeptides have molecular weights of 24.2 kDa and are related to the major chlorophyll a/b polypeptides of higher plants. Southern analysis showed that their genes belong to the nuclear encoded Lhc multigene family; the investigated genes most probably do not contain introns. The chlorophyll a/b/c polypeptides contain two highly conserved regions common to all LHC polypeptides and three hydrophobic -helices, which span the thylakoid membrane. The first membrane-spanning helix, however, is not detected by predictive methods: its atypical hydrophilic domains may bind the chlorophyll c molecules within the hydrophobic membrane environment. Homology to LHC 11 of higher plants and green algae is specifically evident in the C-terminal region comprising helix III and the preceding stroma-exposed domain. The N-terminal region of 29 amino acids resembles the structure of a transit sequence, which shows only minor similarities to those of LHC II sequences. Strikingly, the mature light-harvesting polypeptides of M. squamata lack an N-terminal domain of 30 amino acids, which, in higher plants, contains the phosphorylation site of LHC 11 and simultaneously mediates membrane stacking. Therefore, the chlorophyll a/b/c polypeptides of M. squamata do not exhibit any light-dependent preference for photosystem I or 11. The lack of this domain also indicates that the attractive forces between stacked thylakoids are weak.This study is dedicated to Prof. Dr. W Rüdiger on the occasion of his 60th birthday  相似文献   

4.
The structure of pea light-harvesting complex LHCII determined to 3.4 Å resolution by electron crystallography (Kühlbrandt, Wang and Fujiyoshi (1994) Nature 367: 614–621) was examined to determine the relationship between structural elements and sequence motifs conserved in the extended family of light-harvesting antennas (Chl a/b, fucoxanthin Chl a/c proteins) and membrane-intrinsic stress-induced proteins (ELIPs) to which LHCII belongs. It is predicted that the eukaryotic ELIPs can bind at least four molecules of Chl. The one-helix prokaryotic ELIP of Synechococcus was modelled as a homodimer based on the high degree of conservation of residues involved in the interactions of the first (B) and third (A) helices of LHCII.Abbreviations CAB Chl a/b-binding - ELIP early light-inducible protein - FCP fucoxanthin-Chl a/c protein - Lut1, Lut2 lutein molecules 1 and 2  相似文献   

5.
We investigated the primary structure of a cDNA encoding a light-harvesting protein from the marine chrysophyteIsochrysis galbana. Antibodies raised against the major fucoxanthin, chlorophylla/c-binding light-harvesting protein (FCP) ofI. galbana were used to select a cDNA clone encoding one of the FCP apoproteins. The nucleic acid and deduced amino acid sequences reveal conserved regions within the first and third transmembrane spans with Chla/b-binding proteins and with FCPs of another chromophyte. However, the amino acid identity betweenI. galbana FCP and othercab genes of FCPs is only ca. 30%. Phylogenetic analyses demonstrated that the FCP genes of both diatoms and chrysophytes sequenced to date are more closely related tocab genes encoding LHC I, CP 29, and CP 24 of higher plants than tocab genes encoding LHC II of chlorophytes. We propose that LHC I, CP 24 and CP 29 and FCP might have originated from a common ancestral chl binding protein and that the major LHC II of Chla/b-containing organisms arose after the divergence between the chromophytes and the chlorophytes.  相似文献   

6.
cDNA species encoding precursor polypeptides of the chlorophyll a/b/c light-harvesting complex (LHC) of Mantoniella squamata were cloned and sequenced. The precursor polypeptides have molecular weights of 24.2 kDa and are related to the major chlorophyll a/b polypeptides of higher plants. Southern analysis showed that their genes belong to the nuclear encoded Lhc multigene family; the investigated genes most probably do not contain introns. The chlorophyll a/b/c polypeptides contain two highly conserved regions common to all LHC polypeptides and three hydrophobic α-helices, which span the thylakoid membrane. The first membrane-spanning helix, however, is not detected by predictive methods: its atypical hydrophilic domains may bind the chlorophyll c molecules within the hydrophobic membrane environment. Homology to LHC 11 of higher plants and green algae is specifically evident in the C-terminal region comprising helix III and the preceding stroma-exposed domain. The N-terminal region of 29 amino acids resembles the structure of a transit sequence, which shows only minor similarities to those of LHC II sequences. Strikingly, the mature light-harvesting polypeptides of M. squamata lack an N-terminal domain of 30 amino acids, which, in higher plants, contains the phosphorylation site of LHC 11 and simultaneously mediates membrane stacking. Therefore, the chlorophyll a/b/c polypeptides of M. squamata do not exhibit any light-dependent preference for photosystem I or 11. The lack of this domain also indicates that the attractive forces between stacked thylakoids are weak.  相似文献   

7.
8.
The light-harvesting complexes (LHCs) are a superfamily of chlorophyll-binding proteins present in all photosynthetic eukaryotes. The Lhc genes are nuclear-encoded, yet the pigment–protein complexes are localized to the thylakoid membrane and provide a marker to follow the evolutionary paths of plastids with different pigmentation. The LHCs are divided into the chlorophyll a/b-binding proteins of the green algae, euglenoids, and higher plants and the chlorophyll a/c-binding proteins of various algal taxa. This work examines the phylogenetic position of the LHCs from three additional taxa: the rhodophytes, the cryptophytes, and the chlorarachniophytes. Phylogenetic analysis of the LHC sequences provides strong statistical support for the clustering of the rhodophyte and cryptomonad LHC sequences within the chlorophyll a/c-binding protein lineage, which includes the fucoxanthin–chlorophyll proteins (FCP) of the heterokonts and the intrinsic peridinin–chlorophyll proteins (iPCP) of the dinoflagellates. These associations suggest that plastids from the heterokonts, haptophytes, cryptomonads, and the dinoflagellate, Amphidinium, evolved from a red algal-like ancestor. The Chlorarachnion LHC is part of the chlorophyll a/b-binding protein assemblage, consistent with pigmentation, providing further evidence that its plastid evolved from a green algal secondary endosymbiosis. The Chlorarachnion LHC sequences cluster with the green algal LHCs that are predominantly associated with photosystem II (LHCII). This suggests that the green algal endosymbiont that evolved into the Chlorarachnion plastid was acquired following the emergence of distinct LHCI and LHCII complexes. Received: 25 February 1998 / Accepted: 13 May 1998  相似文献   

9.
Summary iserum against two polypeptides of the major fucoxanthin-chlorophylla/c light-harvesting complex of the diatomPhaeodactylum tricornutum and heterologous antiserum against purified photosystem I particles of maize were used to localize these two complexes on the thylakoid membranes ofP. tricornutum. As in many chromophyte algae, the thylakoids are loosely appressed and organized into extended bands of three, giving a ratio of 21 for appressed versus non-appressed membranes. Immunoelectron microscopy demonstrated that the fucoxanthin-chlorophylla/c light-harvesting complex, which is believed to be associated with photosystem II, was equally distributed on the appressed and non-appressed thylakoid membranes. Photosystem I was also found on both types of membranes, but was slightly more concentrated on the two outer non-appressed membranes of each band. Similarly, photosystem I activity, as measured by the photooxidation of 3,3-diaminobenzidine, was higher in the outer thylakoids than in the central thylakoid of each band. We conclude that the thylakoids of diatoms differ from those of green algae and higher plants in their macromolecular organization as well as in their morphological arrangement.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - FCPC fucoxanthin-chlorophylla/c light-harvesting complex - LHC light-harvesting complex - PBS phosphate-buffered saline - PS photosystem  相似文献   

10.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences.  相似文献   

11.
The primary structure of the Chla/b/c-binding protein from Mantoniella squamata is determined. This is the first report that protein sequencing reveals one modified amino acid resulting in a LHCP-specific TFA-cleavage site. The comparison of the sequence of Mantoniella with other Chla/b-and Chla/c-binding proteins shows that the modified amino acid is located in a region which is highly conserved in all these proteins. The alignment also reveals that the LHCP of Mantoniella is related to the Chla/b-binding proteins. Finally, possible Chl-binding regions are discussed.Abbreviations a.m.u. atomic mass unit - LHC light-harvesting complex - LHC II major LHC of Photosystem II - LHCP light-harvesting chlorophyll-binding protein - LSIMS liquid secondary ion mass spectrometry - TFA trifluoroacetic acid  相似文献   

12.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

13.
A light-harvesting pigment-protein complex was isolated from the diatom Phaeodactylum tricornutum using the zwitterionic detergent CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Detergent-solubilized membranes were fractionated by sucrose density gradient centrifugation into three components. The medium density fraction contained chlorophyll a, chlorophyll c, and fucoxanthin. This fraction was purified by DEAE-ion exchange chromatography, and contained chlorophyll a, chlorophyll c, and fucoxanthin in a molar ratio of 2.4:1.0:4.8. Fluorescence emission and excitation spectra of the isolated complex demonstrated that light energy absorbed by chlorophyll c and fucoxanthin was coupled to chlorophyll a fluorescence. Upon denaturation, the apoprotein yielded a polypeptide doublet at 17.5 to 18.0 kilodaltons which accounted for 30 to 40% of the toal membrane protein. These findings indicate that this pigment-protein complex is a major component of the diatom photosynthetic lammellae. The quantitative amino acid composition of the apoprotein was very similar to those reported for other membrane-bound pigment-protein complexes. Based on the protein to chlorophyll a ratio of 7700 grams protein per mole chlorophyll a for the complex, each apoprotein molecule contains, to the nearest integer, two chlorophyll a, one chlorophyll c, and five fucoxanthin molecules. Polyclonal antibodies raised against the 17.5 to 18.0 kilodaltons apoprotein showed a monospecific reaction with only the 17.5 to 18.0 protein zone from denatured P. tricornutum membranes as well as to the nondenatured pigment-protein complex. It appears that this complex is common to other diatom species.  相似文献   

14.
 A fucoxanthin-chlorophyll protein (FCP) cDNA from the raphidophyte Heterosigma carterae encodes a 210-amino acid polypeptide that has similarity to other FCPs and to the chlorophyll a/b-binding proteins (CABs) of terrestrial plants and green algae. The putative transit sequence has characteristics that resemble a signal sequence. The Heterosigma fcp genes are part of a large multigene family which includes members encoding at least two significantly different polypeptides (Fcp1, Fcp2). Comparison of the FCP sequences to the recently determined three-dimensional structure of the pea LHC II complex indicates that many of the key amino acids thought to participate in the binding of chlorophyll and the formation of complex-stabilizing ionic interactions are well conserved. Phylogenetic analyses of sequences of light-harvesting proteins shows that the FCPs of several chromophyte phyla form a natural group separate from the intrinisic peridinin-chlorophyll proteins (iPCPs) of the dinoflagellates. Although the FCP and CAB genes shared a common ancestor, these lineages diverged from each other prior to the separation of the CAB LHC I and LHC II sequences in the green algae and terrestrial plants. Received: 8 July 1996 / Accepted: 21 August 1996  相似文献   

15.
Owens TG  Wold ER 《Plant physiology》1986,80(3):732-738
Three pigment-protein complexes were isolated from the marine diatom Phaeodactylum tricornutum (Bohlin) by treatment of thylakoid membrane fragments with 1% Triton X-100 at 4°C followed by centrifugation on sucrose density gradients. The major complex contains chlorophyll a, c1, c2, and the carotenoid fucoxanthin (chlorophyll a: c1: c2: fucoxanthin = 1.0: 0.09: 0.28: 2.22) bound to an apoprotein doublet of 16.4 and 16.9 kilodaltons. This complex accounts for >70% of the total pigment and 20 to 40% of the protein in the thylakoid membranes. Efficient coupling of chlorophyll c and fucoxanthin absorption to chlorophyll a fluorescence supports a light-harvesting function for the complex. A minor light-harvesting complex containing chlorophyll a, c1, and c2 but no fucoxanthin (chlorophyll a: c1: c2 = 1.0: 0.23: 0.26) was also isolated at Triton: chlorophyll a ratios between 20 and 40. These pigments are bound to a similar molecular weight apoprotein doublet. The third complex isolated was the P700-chlorophyll a protein, the reaction center of photosystem I, which showed characteristics similar to those isolated from other plant sources. The yield of the chlorophyll a/c-fucoxanthin complex was shown to respond strongly to changes in light intensity during growth, accounting for most of the changes in cellular pigmentation.  相似文献   

16.
Thomas Veith 《BBA》2007,1767(12):1428-1435
A photosystem I (PSI)-fucoxanthin chlorophyll protein (FCP) complex with a chlorophyll a/P700 ratio of approximately 200:1 was isolated from the diatom Phaeodactylum tricornutum. Spectroscopic analysis proved that the more tightly bound FCP functions as a light-harvesting complex, actively transferring light energy from its accessory pigments chlorophyll c and fucoxanthin to the PSI core. Using an antibody against all FCP polypeptides of Cyclotella cryptica it could be shown that the polypeptides of the major FCP fraction differ from the FCPs found in the PSI fraction. Since these FCPs are tightly bound to PSI, active in energy transfer, and not found in the main FCP fraction, we suppose them to be PSI specific. Blue Native-PAGE, gel filtration and first electron microscopy studies of the PSI-FCP sample revealed a monomeric complex comparable in size and shape to the PSI-LHCI complex of green algae.  相似文献   

17.
mRNA from the dinoflagellate Symbiodinium sp. isolated from the staghorn coral Acropora formosa was used for the construction of cDNA libraries. A cDNA clone was identified which encoded the precursor of peridinin-chlorophyll a-binding protein (PCP), including a 52 amino acid transit peptide and the 313 amino acid mature protein. The deduced amino acid sequence clearly contains an internal duplication, implying that amongst dinoflagellates the M r 35 000 form of PCP has arisen by duplication and fusion of genes encoding the M r 15 000 form. This is the first reported sequence of a dinoflagellate light-harvesting protein. The anatomy of the mature protein and the transit peptide are discussed.Abbreviations PCP peridinin-chlorophyll a-binding protein; cab, chlorophyll a/b-binding protein - LHC light-harvesting complex - FCP fucoxanthin-chlorophyll a/c-binding protein  相似文献   

18.
Earlier we have shown by in vitro reconstitution experiments that the pigment composition of the chlorophyll alb-binding light-harvesting complex of the green alga Chlorella fusca could be altered in a relatively broad range (Meyer and Wilhelm 1993). In this study we used these reconstituted complexes of different pigment loading to analyze the excitonic interactions between the pigment molecules and the secondary structure by means of circular dichroism spectra in the visible and the far UV spectral regions, respectively. We found that, in contrast to the expectations, the pigment composition and pigment content hardly affected the circular dichroism spectra in the visible spectral region. Reconstituted complexes, independent of their pigment composition, exhibited the most characteristic circular dichroism bands of the native light-harvesting complex, even if one polypeptide bound only 3 chlorophyll a, 3 chlorophyll b and 1–2 xanthophyll molecules. Full restoration of the protein secondary structure, however, could not be achieved. The -helix content depended significantly on the pigment composition as well as on the pigment-protein ratio of the reconstituted complexes. Further binding of pigments resulted in restoration of the minor excitonic circular dichroism bands, the amplitudes of which depended on the pigment content of the reconstituted complexes. These data suggest that in the reconstitution of light-harvesting complexes a central cluster of pigment molecules plays an important role. Further binding of pigments to the peripheral binding sites appeared also to stabilize the protein secondary structure of the reconstituted complexes.Abbreviations CD- circular dichroism - LHC- chlorophyll a/b light-harvesting complex(es) - LHC II- light-harvesting complex(es) of Photosystem II of higher plants - LHCP- light-harvesting Chl a/b-binding protein(s) - PP- polypeptide(s)  相似文献   

19.
We isolated and sequenced a cDNA clone encoding a minor chlorophyll a/b-binding protein, CP26, which is associated with the light-harvesting complex II of Chlamydomonas reinhardtii. Protein sequences of internal peptide fragments from purified CP26 were determined and used to identify a cDNA clone. The 1.1 kb lhcb5 gene codes for a polypeptide of 289 amino acids with a predicted molecular weight of 30713. The lhcb5 gene product could reconstitute with chlorophylls and xanthophylls to form a green band on a gel. Although the expression of many lhcb genes are strictly regulated by light, the lhcb5 gene was only loosely regulated. We propose that a plant acclimatizes itself to the light environment by quantitatively and qualitatively modulating the light-harvesting complex. Characterization of the primary structure and the implications of its unique expression are discussed.  相似文献   

20.
The nuclear-encoded Chl a/b and Chl a/c antenna proteins of photosynthetic eukaryotes are part of an extended family of proteins that also includes the early light-induced proteins (ELIPs) and the 22 kDa intrinsic protein of PS II (encoded by psbS gene). All members of this family have three transmembrane helices except for the psbS protein, which has four. The amino acid sequences of these proteins are compared and related to the three-dimensional structure of pea LHC II Type I (Kühlbrandt and Wang, Nature 350: 130–134, 1991). The similarity of psbS to the three-helix members of the family suggests that the latter arose from a four-helix ancestor that lost its C-terminal helix by deletion. Strong internal similarity between the two halves of the psbS protein suggests that it in turn arose as the result of the duplication of a gene encoding a two-helix protein. Since psbS is reported to be present in at least one cyanobacterium, the ancestral four-helix protein may have been present prior to the endosymbiotic event or events that gave rise to the photosynthetic eukaryotes. The Chl a/b and Chl a/c antenna proteins, and the immunologically-related proteins in the rhodophytes may have had a common ancestor which was present in the early photosynthetic eukaryotes, and predated their division into rhodophyte, chromophyte and chlorophyte lineages. The LHC I-LHC II divergence probably occurred before the separation of higher plants from chlorophyte algae and euglenophytes, and the different Types of LHC I and LHC II proteins arose prior to the separation of angiosperms and gymnosperms.Abbreviations CAB Chl a/b-binding - ELIP early light-induced protein - FCP fucoxanthin-Chl a/c protein - PCR polymerase chain reaction - TMH trans-membrane helix  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号